
【国外标准】 Standard Test Method for Measuring Steady-State Primary Photocurrent
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 PN Junction Diode—The steady-state photocurrent of a simple p-n junction diode is a directly measurable quantity that can be directly related to device response over a wide range of ionizing radiation. For more complex devices the junction photocurrent may not be directly related to device response.5.2 Zener Diode—In this device, the effect of the photocurrent on the Zener voltage rather than the photocurrent itself is usually most important. The device is most appropriately tested while biased in the Zener region. In testing Zener diodes or precision voltage regulators, extra precaution must be taken to make certain the photocurrent generated in the device during irradiations does not cause the voltage across the device to change during the test.5.3 Bipolar Transistor—As device geometries dictate that photocurrent from the base-collector junction be much greater than current from the base-emitter junction, measurements are usually made only on the collector-base junction with emitter open; however, sometimes, to obtain data for computer-aided circuit analysis, the emitter-base junction photocurrent is also measured.5.4 Junction Field-Effect Device—A proper photocurrent measurement requires that the source be shorted (dc) to the drain during measurement of the gate-channel photocurrent. In tetrode-connected devices, the two gate-channel junctions should be monitored separately.5.5 Insulated Gate Field-Effect Device—In this type of device, the true photocurrent is between the substrate and the channel, source, and drain regions. A current which can generate voltage that will turn on the device may be measured by the technique used here, but it is due to induced conductivity in the gate insulator and thus is not a junction photocurrent.1.1 This test method covers the measurement of steady-state primary photocurrent, Ipp, generated in semiconductor devices when these devices are exposed to ionizing radiation. These procedures are intended for the measurement of photocurrents greater than 10−9 A·s/Gy(Si or Ge), in cases for which the relaxation time of the device being measured is less than 25 % of the pulse width of the ionizing source. The validity of these procedures for ionizing dose rates as great as 108Gy(Si or Ge)/s has been established. The procedures may be used for measurements at dose rates as great as 1010Gy(Si or Ge)/s; however, extra care must be taken. Above 108Gy/s, the package response may dominate the device response for any device. Additional precautions are also required when measuring photocurrents of 10−9 A·s/Gy(Si or Ge) or lower.1.2 Setup, calibration, and test circuit evaluation procedures are also included in this test method.1.3 Because of the variability between device types and in the requirements of different applications, the dose rate range over which any specific test is to be conducted is not given in this test method but must be specified separately.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F448-18
标准名称:
Standard Test Method for Measuring Steady-State Primary Photocurrent
英文名称:
Standard Test Method for Measuring Steady-State Primary Photocurrent标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4647/D4647M-13(2020) Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
- ASTM D465-15(2020) Standard Test Methods for Acid Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4651-14(2020) Standard Specification for Isobutane Thermophysical Property Tables
- ASTM D4653-87(2020) Standard Test Method for Total Chlorides in Leather