
【国外标准】 Standard Test Method for Determination of Hydrogen Sulfide (H2S) in Natural Gas by Tunable Diode Laser Spectroscopy (TDLAS)
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 H2S measurements in natural gas are performed to ensure concentrations satisfy gas purchase contract criteria and to prevent pipeline and associated component corrosion.5.2 Using TDLAS for the measurement of H2S in natural gas enables a high degree of selectivity with minimal interference from common constituents in natural gas streams. The TDLAS analyzer can detect changes in concentration with a relatively rapid response compared to other methods so that operators may take swift action when designated H2S concentrations are exceeded.5.3 Primary applications covered in this test method are listed in 5.3.1 and 5.3.2. Each application may have differing requirements and methods for gas sampling. Additionally, different natural gas applications may require unique spectroscopic considerations.5.3.1 Raw natural gas is found in production, gathering sites, and inlets to gas-processing plants characterized by potentially high levels of water (H2O), carbon dioxide (CO2), H2S, and heavy hydrocarbons. Gas-conditioning plants and skids are normally used to remove H2O, CO2, H2S, and other contaminants.5.3.2 High-quality “sales gas” is found in transportation pipelines, natural gas distribution (utilities), and natural gas power plant inlets. The gas is characterized by a very high percentage of methane (90 to 100 %) with small quantities of other hydrocarbons and trace levels of contaminants.1.1 This test method is for the online determination of hydrogen sulfide (H2S) in natural gas using tunable diode laser absorption spectroscopy (TDLAS) analyzers also known as a “TDL analyzers.” The particular wavelength for H2S measurement varies by manufacturer, typically between 1000 and 10 000 nm with an individual laser having a tunable range of less than 10 nm. The H2S concentration ranges can be anywhere from 0-5 ppm(v) to 0-90 % by volume.1.2 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard. TDLAS analyzers inherently output concentrations in unitless molar ratios such as ppm(v).NOTE 1: Weight-per-volume units such as milligrams or grains of H2S per cubic foot or cubic meter can be derived from ppm(v) at “standard conditions” or standard temperature and pressure.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8488-22
标准名称:
Standard Test Method for Determination of Hydrogen Sulfide (H2S) in Natural Gas by Tunable Diode Laser Spectroscopy (TDLAS)
英文名称:
Standard Test Method for Determination of Hydrogen Sulfide (H2S) in Natural Gas by Tunable Diode Laser Spectroscopy (TDLAS)标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D8484-23 Standard Specification for Plastic Lumber Materials and Wood-Plastic Composite Materials Used as Exterior Wall Coverings
- 下一篇: ASTM D8489-23e1 Standard Test Method for Determination of Microplastics Particle and Fiber Size, Distribution, Shape, and Concentration in Waters with High to Low Suspended Solids Using a Dynamic Image Particle Size and Shape Analyzer
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices