
【国外标准】 Standard Practice for Cutting Film and Sheeting Test Specimens
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
3.1 Many test methods including Test Methods D882, D2838, F88, F1921/F1921M, and F2029 require the use of narrow strips of varying length. The quality of the sample preparation directly affects test results. This practice describes three techniques for preparing samples with straight, clean, parallel edges with no visible imperfections.NOTE 2: After cutting, each specimen should be examined visually to insure the edges are undamaged (free of nicks). On a periodic basis specimen edge quality should be evaluated by microscopic examination. To determine when cutting blades need to be replaced or sharpened, a control chart of tensile strength and percent elongation at break (see Test Method D882) of a uniform material may be maintained. Tensile strength and percent elongation at break will decrease as the quality of specimen cutting decreases.1.1 This practice covers equipment and techniques for cutting film and sheeting specimens for testing.2 The specimens are nick-free, non-stretched and can be rapidly prepared.1.2 The values given in SI units are to be considered standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6287-17
标准名称:
Standard Practice for Cutting Film and Sheeting Test Specimens
英文名称:
Standard Practice for Cutting Film and Sheeting Test Specimens标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices
- ASTM F3294-18 Standard Guide for Performing Quantitative Fluorescence Intensity Measurements in Cell-based Assays with Widefield Epifluorescence Microscopy
- ASTM F3295-18 Standard Guide for Impingement Testing of Total Disc Prostheses
- ASTM F330-21 Standard Test Method for Bird Impact Testing of Aerospace Transparent Enclosures
- ASTM F3300-23 Standard Test Method for Abrasion Resistance of Flexible Packaging Films Using a Reciprocating Weighted Stylus
- ASTM F3301-18a Standard for Additive Manufacturing – Post Processing Methods – Standard Specification for Thermal Post-Processing Metal Parts Made Via Powder Bed Fusion
- ASTM F3302-18 Standard for Additive Manufacturing – Finished Part Properties – Standard Specification for Titanium Alloys via Powder Bed Fusion
- ASTM F3306-19 Standard Test Method for Ion Release Evaluation of Medical Implants
- ASTM F3308/F3308M-19(2023) Standard Practice for Sampling and Testing Frequency for Recycled Materials in Polyethylene (PE) Pipe for Non-Pressure Applications