
【国外标准】 Standard Test Method for Measurement of Superpave Gyratory Compactor (SGC) Internal Angle of Gyration Using Simulated Loading
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 SGCs are used to produce asphalt mixture specimens in the laboratory to assess volumetric properties and predict pavement performance. In the fabrication of an SGC specimen in accordance with Test Method D6925, loose asphalt mixture is placed inside a metal mold, which is then placed into an SGC. A constant consolidation pressure is applied to the sample while the mold gyrates at a nominally constant angle (referred to as the internal angle of gyration) and rate. Consistency in the density of the asphalt specimens produced as measured by Test Method D2726/D2726M or D6752/D6752M is very important to the validity of the tests performed. Specimens of a consistent density are produced when an SGC maintains a constant pressure and a known constant internal angle of gyration during the compaction process.5.2 There are several manufacturers and models of SGC. Each model employs a unique method of setting, inducing, and maintaining the internal angle of gyration. Each model also employs a unique calibration system to measure the external angle of gyration. These existing calibration systems cannot be used universally on all of the different SGC models commercially available. Inconsistencies in asphalt specimens produced on different SGC models have been at least partially attributed to variations in the angle of gyration.5.3 This method describes instruments and processes that can be used to independently measure the internal angle of gyration of any manufacturer’s SGC model under simulated loading conditions. The external shape of the instrument chassis ensures that the points of physical contact between the mold end plates and the instrument occur at a fixed and known distance away from the axis of gyration. As a result, the vertical load is applied at these fixed points, creating tilting moments at each end of the mold.5.4 Unless otherwise specified, a tilting moment of 466.5 N-m shall be applied to the SGC by the instrument while making this measurement.NOTE 1: The quality of the results produced by this test method are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this test method are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.NOTE 2: A 466.5 N-m tilting moment corresponds to a 22 mm eccentric on the AFLS1 or a 21° cone angle on the DAVII-HMS with an applied load of 10603 N (600 kPa at a 150 mm diameter specimen setting).1.1 This test method covers the procedure for the measurement of the Superpave Gyratory Compactor (SGC) internal angle of gyration using an instrument capable of simulating loading conditions similar to those created by an asphalt mixture specimen.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. The value given in rotations per minute is provided for information regarding commonly used units.1.2.1 IEEE/ASTM SI 10, American National Standard for Metric Practice, offers guidance where use of decimal degrees for plane angles (versus radians) and revolutions per minute for rate of gyration (versus radians per second) is acceptable within the IEEE/ASTM SI 10 system when used on a minimal basis.1.3 The text of this test method references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7115-20
标准名称:
Standard Test Method for Measurement of Superpave Gyratory Compactor (SGC) Internal Angle of Gyration Using Simulated Loading
英文名称:
Standard Test Method for Measurement of Superpave Gyratory Compactor (SGC) Internal Angle of Gyration Using Simulated Loading标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 推荐标准
- AS/NZS 2341.20:1998 Methods of testing bitumen and related roadmarking products Determination of sieve residue for bituminous materials
- AS/NZS 4266.20:1996 Reconstituted wood-based panels - Methods of test Determination of resistance to surface abrasion (Taber abrasion test)
- AS/NZS 4276.20:2003 (R2013) Water microbiology Examination for coagulase positive staphylococci, including Staphylococcus aureus, by membrane filtration
- AS/NZS 60079.20.1:2012 Explosive atmospheres Material characteristics for gas and vapour classification - Test methods and data
- AS/NZS 60695.11.20:2001/Amdt 1:2004 Fire hazard testing Test flames - 500 W flame test methods
- AS/NZS 60745.2.20:2003 Hand-held motor-operated electric tools - Safety - Particular requirements for band saws
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium