
【国外标准】 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 These test methods apply to one-dimensional, laminar flow of water within porous materials such as soil and rock.4.2 The hydraulic conductivity of porous materials generally decreases with an increasing amount of air in the pores of the material. These test methods apply to water-saturated porous materials containing virtually no air.4.3 These test methods apply to permeation of porous materials with water. Permeation with other liquids, such as chemical wastes, can be accomplished using procedures similar to those described in these test methods. However, these test methods are only intended to be used when water is the permeant liquid. See Section 6.4.4 Darcy's law is assumed to be valid and the hydraulic conductivity is essentially unaffected by hydraulic gradient.4.5 These test methods provide a means for determining hydraulic conductivity at a controlled level of effective stress. Hydraulic conductivity varies with varying void ratio, which changes when the effective stress changes. If the void ratio is changed, the hydraulic conductivity of the test specimen will likely change, see Appendix X2. To determine the relationship between hydraulic conductivity and void ratio, the hydraulic conductivity test would have to be repeated at different effective stresses.4.6 The correlation between results obtained using these test methods and the hydraulic conductivities of in-place field materials has not been fully investigated. Experience has sometimes shown that hydraulic conductivities measured on small test specimens are not necessarily the same as larger-scale values. Therefore, the results should be applied to field situations with caution and by qualified personnel.4.7 In most cases, when testing high swell potential materials and using a constant-volume hydraulic system, the effective confining stress should be about 1.5 times the swell pressure of the test specimen or a stress which prevents swelling. If the confining stress is less than the swell pressure, anomalous flow conditions my occur; for example, mercury column(s) move in the wrong direction.NOTE 1: The quality of the result produced by this standard is dependent of the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing, sampling, inspection, etc.. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 These test methods cover laboratory measurement of the hydraulic conductivity (also referred to as coefficient of permeability) of water-saturated porous materials with a flexible wall permeameter at temperatures between about 15 and 30°C (59 and 86°F). Temperatures outside this range may be used; however, the user would have to determine the specific gravity of mercury and RT (see 10.3) at those temperatures using data from Handbook of Chemistry and Physics. There are six alternate methods or hydraulic systems that may be used to measure the hydraulic conductivity. These hydraulic systems are as follows:1.1.1 Method A—Constant Head1.1.2 Method B—Falling Head, constant tailwater elevation1.1.3 Method C—Falling Head, rising tailwater elevation1.1.4 Method D—Constant Rate of Flow1.1.5 Method E—Constant Volume–Constant Head (by mercury)1.1.6 Method F—Constant Volume–Falling Head (by mercury), rising tailwater elevation1.2 These test methods use water as the permeant liquid; see 4.3 and Section 6 on Reagents for water requirements.1.3 These test methods may be utilized on all specimen types (intact, reconstituted, remolded, compacted, etc.) that have a hydraulic conductivity less than about 1 × 10−6 m/s (1 × 10−4 cm/s), providing the head loss requirements of 5.2.3 are met. For the constant-volume methods, the hydraulic conductivity typically has to be less than about 1 × 10−7 m/s.1.3.1 If the hydraulic conductivity is greater than about 1 × 10−6 m/s, but not more than about 1 × 10−5 m/s; then the size of the hydraulic tubing needs to be increased along with the porosity of the porous end pieces. Other strategies, such as using higher viscosity fluid or properly decreasing the cross-sectional area of the test specimen, or both, may also be possible. The key criterion is that the requirements covered in Section 5 have to be met.1.3.2 If the hydraulic conductivity is less than about 1 × 10−11 m/s, then standard hydraulic systems and temperature environments will typically not suffice. Strategies that may be possible when dealing with such impervious materials may include the following: (a) controlling the temperature more precisely, (b) adoption of unsteady state measurements by using high-accuracy equipment along with the rigorous analyses for determining the hydraulic parameters (this approach reduces testing duration according to Zhang et al. (1)2), and (c) shortening the length or enlarging the cross-sectional area, or both, of the test specimen (with consideration to specimen grain size (2)). Other approaches, such as use of higher hydraulic gradients, lower viscosity fluid, elimination of any possible chemical gradients and bacterial growth, and strict verification of leakage, may also be considered.1.4 The hydraulic conductivity of materials with hydraulic conductivities greater than 1 × 10 −5 m/s may be determined by Test Method D2434.1.5 All observed and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026.1.5.1 The procedures used to specify how data are collected, recorded, and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.6 This standard also contains a Hazards section (Section 7).1.7 The time to perform this test depends on such items as the Method (A, B, C, D, E, or F) used, the initial degree of saturation of the test specimen and the hydraulic conductivity of the test specimen. The constant volume Methods (E and F) and Method D require the shortest period-of-time. Typically a test can be performed using Methods D, E, or F within two to three days. Methods A, B, and C take a longer period-of-time, from a few days to a few weeks depending on the hydraulic conductivity. Typically, about one week is required for hydraulic conductivities on the order of 1 × 10–9 m/s. The testing time is ultimately controlled by meeting the equilibrium criteria for each Method (see 9.5).1.8 Units—The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are mathematical conversions, which are provided for information purposes only and are not considered standard, unless specifically stated as standard, such as 0.5 mm or 0.01 in.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM D5084-16a
标准名称:
Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter
英文名称:
Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A102-04(2019) Standard Specification for Ferrovanadium
- ASTM A1021/A1021M-20 Standard Specification for Martensitic Stainless Steel Forgings and Forging Stock for High-Temperature Service