
【国外标准】 Standard Guide for Comparing Groundwater Flow Model Simulations to Site-Specific Information (Withdrawn 2023)
本网站 发布时间:
2024-02-28
- ASTM D5490-93(2014)e1
- Withdrawn, No replacement
- 定价: 0元 / 折扣价: 0 元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 During the process of calibration of a groundwater flow model, each simulation is compared to site-specific information to ascertain the success of previous calibration efforts and to identify potentially beneficial directions for further calibration efforts. Procedures described herein provide guidance for making comparisons between groundwater flow model simulations and measured field data.5.2 This guide is not meant to be an inflexible description of techniques comparing simulations with measured data; other techniques may be applied as appropriate and, after due consideration, some of the techniques herein may be omitted, altered, or enhanced.1.1 This guide covers techniques that should be used to compare the results of groundwater flow model simulations to measured field data as a part of the process of calibrating a groundwater model. This comparison produces quantitative and qualitative measures of the degree of correspondence between the simulation and site-specific information related to the physical hydrogeologic system.1.2 During the process of calibration of a groundwater flow model, each simulation is compared to site-specific information such as measured water levels or flow rates. The degree of correspondence between the simulation and the physical hydrogeologic system can then be compared to that for previous simulations to ascertain the success of previous calibration efforts and to identify potentially beneficial directions for further calibration efforts.1.3 By necessity, all knowledge of a site is derived from observations. This guide does not address the adequacy of any set of observations for characterizing a site.1.4 This guide does not establish criteria for successful calibration, nor does it describe techniques for establishing such criteria, nor does it describe techniques for achieving successful calibration.1.5 This guide is written for comparing the results of numerical groundwater flow models with observed site-specific information. However, these techniques could be applied to other types of groundwater related models, such as analytical models, multiphase flow models, noncontinuum (karst or fracture flow) models, or mass transport models.1.6 This guide is one of a series of guides on groundwater modeling codes (software) and their applications.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.8 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.
标准号:
ASTM D5490-93(2014)e1
标准名称:
Standard Guide for Comparing Groundwater Flow Model Simulations to Site-Specific Information (Withdrawn 2023)
英文名称:
Standard Guide for Comparing Groundwater Flow Model Simulations to Site-Specific Information (Withdrawn 2023)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4611-16 Standard Test Method for Specific Heat of Rock and Soil
- ASTM D4614-11(2019) Standard Specification for Ethyl Acetate (All Grades)
- ASTM D4616-23 Standard Test Method for Microscopical Analysis by Reflected Light and Determination of Mesophase in a Pitch
- ASTM D4618-92(2017) Standard Specification for Design and Fabrication of Flue Gas Desulfurization System Components for Protective Lining Application
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products