
【国外标准】 Standard Test Method for Determining Filtering Efficiency and Flow Rate of the Filtration Component of a Sediment Retention Device
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method is used to determine the filtering efficiency and flow rate of the filtration component of a sediment retention device, such as a silt fence, a silt barrier, or a silt curtain, for specific soil tested.5.2 This test method may be used for the design of the filtration component of a sediment retention device to meet requirements of regulatory agencies in filtering efficiency or flow rate for the specific soil tested.5.2.1 The designer can use this test method to determine the spacing between sediment retention devices.5.3 This test method is intended for performance evaluation, as the results will depend on the specific soil evaluated. Unless testing with the default soil is desired, it is recommended that the user or representative perform the test to pre-approve products, as sediment retention device manufacturers are not typically equipped to handle or test soil requirements.5.4 This test method provides a means of evaluating the filtration component of sediment retention devices with different soils under various conditions that simulate the conditions that exist in a sediment retention device installation. This test method may be used to simulate several storm events on the same sediment retention device specimen. Therefore, the number of times this test is repeated per specimen is dependent upon the user and the site conditions.1.1 This test method is used to determine the filtering efficiency and the flow rate of the filtration component of a sediment retention device, such as a silt fence, silt barrier, or inlet protector.1.1.1 The results are shown as a percentage for filtering efficiency and cubic metres per square metre per minute (m3/m2/min) or gallons per square foot per minute (gal/ft2/min) for flow rate.1.1.2 The filtering efficiency indicates the percent of sediment removed from sediment-laden water.1.1.3 The flow rate is the average rate of passage of the sediment-laden water through the filtration component of a sediment retention device.1.2 This test method requires several specialized pieces of equipment, such as an integrated water sampler and an analytical balance, or a vacuum filtration system. At the client’s discretion, the test soil is either a site-specific soil or a soil that is representative of a target default gradation.1.3 The values stated in SI units are the standard, while the inch-pound units are provided for information. The values expressed in each system may not be exact equivalents; therefore, each system must be used independently of the other, without combining values in any way.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D5141-23
标准名称:
Standard Test Method for Determining Filtering Efficiency and Flow Rate of the Filtration Component of a Sediment Retention Device
英文名称:
Standard Test Method for Determining Filtering Efficiency and Flow Rate of the Filtration Component of a Sediment Retention Device标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process