
【国外标准】 Standard Practice for Solar Simulation for Thermal Balance Testing of Spacecraft
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This practice provides guidance for making adequate thermal balance tests of spacecraft and components where solar simulation has been determined to be the applicable method. Careful adherence to this practice should ensure the adequate simulation of the radiation environment of space for thermal tests of space vehicles. This practice also provides the proper test environment for systems-integration tests of space vehicles. However, there is no discussion herein of the extensive electronic equipment and procedures required to support such tests. This practice does not apply to or provide incomplete coverage of the following types of tests: launch phase or atmospheric reentry of space vehicles; landers on planet surfaces; degradation of thermal coatings; increased friction in space of mechanical devices, sometimes called "cold welding"; sun sensors; man in space; energy conversion devices; and tests of components for leaks, outgassing, radiation damage, or bulk thermal properties.1.1 Purpose: 1.1.1 The primary purpose of this practice is to provide guidance for making adequate thermal balance tests of spacecraft and components where solar simulation has been determined to be the applicable method. Careful adherence to this practice should ensure the adequate simulation of the radiation environment of space for thermal tests of space vehicles.1.1.2 A corollary purpose is to provide the proper test environment for systems-integration tests of space vehicles. An accurate space-simulation test for thermal balance generally will provide a good environment for operating all electrical and mechanical systems in their various mission modes to determine interferences within the complete system. Although adherence to this practice will provide the correct thermal environment for this type of test, there is no discussion of the extensive electronic equipment and procedures required to support systems-integration testing.1.2 Nonapplicability—This practice does not apply to or provide incomplete coverage of the following types of tests:1.2.1 Launch phase or atmospheric reentry of space vehicles,1.2.2 Landers on planet surfaces,1.2.3 Degradation of thermal coatings,1.2.4 Increased friction in space of mechanical devices, sometimes called “cold welding,”1.2.5 Sun sensors,1.2.6 Man in space,1.2.7 Energy conversion devices, and1.2.8 Tests of components for leaks, outgassing, radiation damage, or bulk thermal properties.1.3 Range of Application: 1.3.1 The extreme diversification of space-craft, design philosophies, and analytical effort makes the preparation of a brief, concise document impossible. Because of this, various spacecraft parameters are classified and related to the important characteristic of space simulators in a chart in 7.6.1.3.2 The ultimate result of the thermal balance test is to prove the thermal design to the satisfaction of the thermal designers. Flexibility must be provided to them to trade off additional analytical effort for simulator shortcomings. The combination of a comprehensive thermal-analytical model, modern computers, and a competent team of analysts greatly reduces the requirements for accuracy of space simulation.1.4 Utility—This practice will be useful during space vehicle test phases from the development through flight acceptance test. It should provide guidance for space simulation testing early in the design phase of thermal control models of subsystems and spacecraft. Flight spacecraft frequently are tested before launch. Occasionally, tests are made in a space chamber after a sister spacecraft is launched as an aid in analyzing anomalies that occur in space.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E491-73(2020)
标准名称:
Standard Practice for Solar Simulation for Thermal Balance Testing of Spacecraft
英文名称:
Standard Practice for Solar Simulation for Thermal Balance Testing of Spacecraft标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices