
【国外标准】 Standard Test Method for Preparing Quantitative Pole Figures
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
3.1 Pole figures are two-dimensional graphic representations, on polar coordinate paper, of the average distribution of crystallite orientations in three dimensions. Data for constructing pole figures are obtained with X-ray diffractometers, using reflection and transmission techniques. 3.2 Several alternative procedures may be used. Some produce complete pole figures. Others yield partial pole figures, which may be combined to produce a complete figure. 1.1 This test method covers the use of the X-ray diffractometer to prepare quantitative pole figures. 1.2 The test method consists of several experimental procedures. Some of the procedures (1-5)2 permit preparation of a complete pole figure. Others must be used in combination to produce a complete pole figure. 1.3 Pole figures (6) and inverse pole figures (7-10) are two dimensional averages of the three-dimensional crystallite orientation distribution. Pole figures may be used to construct either inverse pole figures (11-13) or the crystallite orientation distribution (14-21). Development of series expansions of the crystallite orientation distribution from reflection pole figures (22, 23) makes it possible to obtain a series expansion of a complete pole figure from several incomplete pole figures. Pole figures or inverse pole figures derived by such methods shall be termed calculated. These techniques will not be described herein. 1.4 Provided the orientation is homogeneous through the thickness of the sheet, certain procedures (1-3) may be used to obtain a complete pole figure. 1.5 Provided the orientation has mirror symmetry with respect to planes perpendicular to the rolling, transverse, and normal directions, certain procedures (4, 5, 24) may be used to obtain a complete pole figure. 1.6 The test method emphasizes the Schulz reflection technique (25). Other techniques (3, 4, 5, 24) may be considered variants of the Schulz technique and are cited as options, but not described herein. 1.7 The test method also includes a description of the transmission technique of Decker, et al (26), which may be used in conjunction with the Schulz reflection technique to obtain a complete pole figure. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E81-96(2017)
标准名称:
Standard Test Method for Preparing Quantitative Pole Figures
英文名称:
Standard Test Method for Preparing Quantitative Pole Figures标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 1660.2.1:1998 (R2017)/Amdt 1:2001 Test methods for electric cables, cords and conductors - Insulation, extruded semi-conductive screens and non-metallic sheaths - Methods for general application
- AS/NZS 1660.2.4:1998 (R2017)/Amdt 1:2001 Test methods for electric cables, cords and conductors - Insulation, extruded semi-conductive screens and non-metallic sheaths - Methods specific to polyethylene and polypropylene materials
- AS/NZS 1660.2.5:1998 (R2017)/Amdt 1:2001 Test methods for electric cables, cords and conductors - Insulation, extruded semi-conductive screens and non-metallic sheaths - Methods specific to cables above 1 kV
- AS/NZS 3808:2000 (R2017)/Amdt 2:2004 Insulating and sheathing materials for electric cables
- AS/NZS 4488.1:1997 (R2017)/Amdt 1:1999 Industrial rope access systems - Specifications
- AS/NZS 5065:2005 (R2017)/Amdt 1:2010 Polyethylene and polypropylene pipes and fittings for drainage and sewerage applications
- AS/NZS 60335.2.96:2002 (R2016)/Amdt 1:2004 Household and similar electrical appliances - Safety - Particular requirements for flexible sheet heating elements for room heating
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications