
【国外标准】 Standard Guide for Performance of Lifetime Bioassay for the Tumorigenic Potential of Implant Materials
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This guide is not intended to specify the exact method of conducting a test for any particular material but only to present some of the criteria that should be considered in method design and possible problems that could lead to misleading results. In the development of the actual test protocol, it is recommended that recognized tumorigenesis bioassay procedures be consulted.4.2 The recommendations given in this guide may not be appropriate for all applications or types of implant materials. These recommendations should be utilized by experienced testing personnel in conjunction with other pertinent information and the requirements of the specific material application.1.1 This guide is intended to assist the biomaterials testing laboratory in the conduct and evaluation of tumorigenicity tests to evaluate the potential for new materials to evoke a neoplastic response. The procedure is generally reserved only for those materials which have not previously been used for human implantation for a significant period of time.1.2 Assessment of tumorigenicity is one of several procedures employed in determining the biological response to a material as recommended in Practice F748. It is assumed that the investigator has already determined that this type of testing is necessary for a particular material before consulting this guide. The recommendations of Practice F748 should be considered before a study is commenced.1.3 Whenever possible, it is recommended that a battery of genotoxicity procedures be initiated and proposed as an alternative to an in-vivo tumorigenicity bioassay. Genotoxicity assays may also be considered as initial screening procedures due to the sensitivity of the assays, the significant reduction in time to gain valuable data, and the desire to reduce the use of animals for testing. Genotoxicity assays that may be considered are outlined in Guides E1262, E1263, E1280, and E2186, and Practices E1397 and E1398. Additionally, other genotoxicity testing which might be considered (but which do not yet have ASTM test methods) include Salmonella/Mammalian-Microsomal Plate Incorporation Mutagenicity Assay, In Vivo Cytogenetics Bone Marrow Chromosomal Damage Assay, BALB/3T3 Morphological Transformation of Mouse Embryo Cells, and the Mouse Micronucleus Assay. The investigator is advised to consider carefully the appropriateness of a particular method for his application after a review of the published literature.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F1439-03(2018)
标准名称:
Standard Guide for Performance of Lifetime Bioassay for the Tumorigenic Potential of Implant Materials
英文名称:
Standard Guide for Performance of Lifetime Bioassay for the Tumorigenic Potential of Implant Materials标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM F1438-93(2020) Standard Test Method for Determination of Surface Roughness by Scanning Tunneling Microscopy for Gas Distribution System Components (Withdrawn 2023)
- 下一篇: ASTM F144-80(2019) Standard Practice for Making Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods
- 推荐标准
- ASC X9 TR 48-2018 Card-Not-Present (CNP) Fraud Mitigation in the United States: Strategies for Preventing, Detecting, and Responding to a Growing Threat
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A102-04(2019) Standard Specification for Ferrovanadium