
【国外标准】 Standard Test Method for Determining Temperatures and Heats of Transitions of Fluoropolymers by Differential Scanning Calorimetry
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 DSC analysis may be used with fluoropolymers to achieve at least four different objectives as follows:4.1.1 To measure transition temperatures to aid in the identification of the various fluoropolymers, individually or in mixtures;4.1.2 To compare the relative levels of crystalline content of two or more specimens of a sample of a fluoropolymer relative to another sample by measuring the heat of fusion;NOTE 2: Absolute values of crystalline content cannot be determined until values for heats of fusion of the completely crystalline polymers are available.4.1.3 The heat of crystallization of pure PTFE homopolymer is depending on the relative molecular weight of the specimen. Some PTFE resins are modified with small amounts of comonomers. These modifications have profound effects on crystallization behavior and shall be considered when evaluating the results.4.1.4 To characterize PTFE (DSC thermal curves determined on powders or products of PTFE that have never been melted convey appreciable information about details of morphology and molecular structure);44.1.5 To supplement the test for standard specific gravity (SSG) described in Specifications D4894 and D4895 by using the heat of crystallization of pure PTFE homopolymer, depending on the relative molecular weight of the specimen. The scopes of these specifications, however, include PTFE resins modified with small amounts of comonomers, and many commercial PTFE resins are modified in this manner. These modifications can have profound effects on crystallization behavior. Published relationships4 between heat of crystallization and molecular weight refer to pure PTFE homopolymers and, therefore, cannot be applied to the modified resins.1.1 This test method defines conditions for the use of differential scanning calorimetry (DSC) with fluoropolymers. It covers the use of DSC analyses with the fluoropolymers, PTFE, PVDF, PCTFE, and PVF and their copolymers PFA, MFA, FEP, ECTFE, EFEP, VDF/HFP, VDF/TFE/HFP, VDF/CTFE. The test method is applicable to the analysis of powders as well as samples taken from semi-finished or finished products. The nature of fluoropolymers is such that special procedures are needed for running DSC analysis and interpreting the results.1.2 The values stated in SI units as detailed in IEEE/ASTM SI-10 are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is currently no ISO standard that duplicates this test method. ISO 20568-1 and ISO 20568-2 cover similar testing and reference this test method for testing conditions.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D4591-22
标准名称:
Standard Test Method for Determining Temperatures and Heats of Transitions of Fluoropolymers by Differential Scanning Calorimetry
英文名称:
Standard Test Method for Determining Temperatures and Heats of Transitions of Fluoropolymers by Differential Scanning Calorimetry标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4611-16 Standard Test Method for Specific Heat of Rock and Soil
- ASTM D4614-11(2019) Standard Specification for Ethyl Acetate (All Grades)
- ASTM D4616-23 Standard Test Method for Microscopical Analysis by Reflected Light and Determination of Mesophase in a Pitch
- ASTM D4618-92(2017) Standard Specification for Design and Fabrication of Flue Gas Desulfurization System Components for Protective Lining Application
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products