
【国外标准】 Standard Test Method for Hydraulic Conductivity Ratio (HCR) Testing of Soil/Geotextile Systems
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method is to be used for measuring the hydraulic conductivity of water-saturated soil/geotextile systems.5.2 This test method is to be used as a design performance test, or as a comparative tool for evaluating the filtration behavior of soils with geotextiles. This test method is not intended for routine (index-style) testing, since the results will depend on the specific soil and hydraulic conditions that are evaluated. It is not appropriate to use the test results for job specifications or manufacturers' certifications.5.3 This test method applies to the permeation of porous materials with water. Permeation with other liquids, such as chemical wastes, can be accomplished using procedures similar to those described in this test method. However, this test method is intended to be used only when water is the permeant liquid.5.4 The mathematical concepts (primarily Darcy's law) used in this test method were originally developed for one-dimensional, laminar flow of water within porous materials, which is often the case with soil and geotextiles. When flow conditions are laminar and one-dimensional, the hydraulic conductivity is unaffected by hydraulic gradient. However, when flow occurs through some soil/geotextile systems, a change in hydraulic gradient could cause movement of soil particles, thereby changing the structure of the test specimen and hence, changing the hydraulic conductivity of the soil/geotextile system. The mathematical expressions given by Darcy's law are still appropriate for application to this situation; however, it is therefore imperative that the hydraulic gradient be controlled carefully in the HCR test to simulate field conditions.5.5 This test method provides a means of determining hydraulic conductivity at a controlled level of effective stress. Hydraulic conductivity varies with void ratio, which in turn varies with effective stress. The hydraulic conductivity of the test specimen will probably change if the void ratio is changed. It is therefore imperative that the effective stress (that is, the effective confining pressure) be controlled carefully in the HCR test to simulate field conditions.1.1 This test method covers laboratory measurement of the hydraulic conductivity of water-saturated porous materials with a flexible-wall permeameter.1.2 This test method may be used with undisturbed or compacted soil specimens that have a hydraulic conductivity less than or equal to 5 × 10−2 cm/s.1.3 The filtration behavior of soils with hydraulic conductivities greater than 5 × 10−2 cm/s may be determined by the gradient ratio test (Test Method D5101).1.4 The values stated in SI units are to be regarded as the standard, although other units are provided for information and clarification purposes.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D5567-94(2018)
标准名称:
Standard Test Method for Hydraulic Conductivity Ratio (HCR) Testing of Soil/Geotextile Systems
英文名称:
Standard Test Method for Hydraulic Conductivity Ratio (HCR) Testing of Soil/Geotextile Systems标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D5566-95(2011) Standard Test Method for Determination of Inorganic Salt Content of Sulfated and Sulfonated Oils (Withdrawn 2020)
- 下一篇: ASTM D5568-22a Standard Test Method for Measuring Relative Complex Permittivity and Relative Magnetic Permeability of Solid Materials at Microwave Frequencies Using Waveguide
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices