
【国外标准】 Standard Practice for Calculating Design Value Treatment Adjustment Factors for Fire-Retardant-Treated Lumber
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Fire-retardant-treatments are used to reduce the flame-spread characteristics of wood. Chemicals and redrying conditions employed in treatments are known to modify the strength properties of the wood product being treated. This practice establishes the procedures for determining adjustment factors that account for the isolated effects of fire-retardant treatment on design properties of lumber. These effects are established relative to performance of untreated lumber.5.2 The effect of fire-retardant treatments on the strength of lumber used in roof framing applications is time related. In this practice, the cumulative effect on strength of annual thermal loads from all temperature bins is increased 50 times to establish treatment adjustment factors for fire-retardant treated lumber roof framing.5.3 The procedures of Test Method D5664 employ an elevated temperature intended to produce strength losses in a short period of time. Although the exposure is much more severe than that which occurs in an actual roof system, the chemical reactions that occur in the laboratory test are considered to be the same as those occurring over long periods of time in the field.5.4 Treatment adjustment factors developed under this practice apply to lumber installed in accordance with construction practices recommended by the fire-retardant chemical manufacturer which include avoidance of direct wetting, precipitation or frequent condensation. Application of this practice is limited to roof applications with design consistent with 1.3.1.1 This practice covers procedures for calculating adjustment factors that account for the effects of fire-retardant treatment on design properties of lumber. The adjustment factors calculated in accordance with this practice are to be applied to design values for untreated lumber in order to determine design values for fire-retardant-treated lumber used at ambient temperatures [service temperatures up to 100 °F (38 °C)] and as framing in roof systems.NOTE 1: This analysis focuses on the relative performance of treated and untreated materials tested after equilibrating to ambient conditions following a controlled exposure to specified conditions of high temperature and humidity. Elevated temperature, moisture, load duration, and other factors typically accounted for in the design of untreated lumber must also be considered in the design of fire-retardant-treated lumber, but are outside the scope of the treatment adjustments developed under this practice.1.2 These adjustment factors for the design properties in bending, tension parallel to grain, compression parallel to grain, horizontal shear, and modulus of elasticity are based on the results of strength tests of matched treated and untreated small clear wood specimens after conditioning at nominal room temperatures [72 °F (22 °C)] and of other similar specimens after exposure at 150 °F (66 °C). The test data are developed in accordance with Test Method D5664. Guidelines are provided for establishing adjustment factors for the property of compression perpendicular to grain and for connection design values.1.3 Treatment adjustment factors for roof framing applications are based on thermal load profiles for normal wood roof construction used in a variety of climates as defined by weather tapes of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE).2 The solar loads, moisture conditions, ventilation rates, and other parameters used in the computer model were selected to represent typical sloped roof designs. The thermal loads in this practice are applicable to roof slopes of 3 in 12 or steeper, to roofs designed with vent areas and vent locations conforming to national standards of practice and to designs in which the bottom side of the roof sheathing is exposed to ventilation air. For designs that do not have one or more of these base-line features, the applicability of this practice needs to be documented by the user.1.4 The procedures of this practice parallel those given in Practice D6305. General references and commentary in Practice D6305 are also applicable to this practice.1.5 The values stated in inch-pound units are to be regarded as standard. The SI units listed in parentheses are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6841-21
标准名称:
Standard Practice for Calculating Design Value Treatment Adjustment Factors for Fire-Retardant-Treated Lumber
英文名称:
Standard Practice for Calculating Design Value Treatment Adjustment Factors for Fire-Retardant-Treated Lumber标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- INCITS/ISO/IEC 14496-5:2001/AM 21:2009 [R2016] Information technology -- Coding of audio-visual objects -- Part 5: Reference software - Amendment 21: Frame-based Animated Mesh Compression reference software
- INCITS/ISO/IEC 21000-21:2017 (2021) Information technology - Multimedia framework (MPEG-21) - Part 21: Media contract ontology
- INCITS/ISO/IEC 23000-21:2019 (2021) Information technology - Multimedia application format (MPEG-A) - Part 21: Visual identity management application format
- ASTM D8137-18(2023) Practice for Accelerated Aging of Leather
- ASTM D8138-23 Standard Specification for Preformed Silicone Joint Sealing System for Bridges
- ASTM D8139-23 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
- ASTM D814-95(2020) Standard Test Method for Rubber Property—Vapor Transmission of Volatile Liquids
- ASTM D8140-18(2023) Standard Guide for the Use of Foundry Sand in Asphalt Mixtures
- ASTM D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments
- ASTM D8144-22 Standard Test Method for Separation and Determination of Aromatics, Nonaromatics, and FAME Fractions in Middle Distillates by Solid-Phase Extraction and Gas Chromatography
- ASTM D8148-22 Standard Test Method for Spectroscopic Determination of Haze in Fuels
- ASTM D8149-20 Standard Practice for Optimization, Calibration, and Validation of Ion Chromatographic Determination of Heteroatoms and Anions in Petroleum Products and Lubricants
- ASTM D8150-22 Standard Test Method for Determination of Organic Chloride Content in Crude Oil by Distillation Followed by Detection Using Combustion Ion Chromatography
- ASTM D8152-18 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test
- ASTM D8154-24 Standard Test Methods for 1H-NMR Determination of Ketone-Ethylene-Ester and Polyvinyl Chloride Contents in KEE-PVC Roofing Fabrics