
【国外标准】 Standard Practice for Determining Neutron Exposures for Nuclear Reactor Vessel Support Structures
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
3.1 Prediction of neutron radiation effects to pressure vessel steels has long been a part of the design and operation of light water reactor power plants. Both the federal regulatory agencies (see 2.3) and national standards groups (see 2.1 and 2.2) have promulgated regulations and standards to ensure safe operation of these vessels. The support structures for pressurized water reactor vessels may also be subject to similar neutron radiation effects (1, 3-6).2 The objective of this practice is to provide guidelines for determining the neutron radiation exposures experienced by individual vessel supports.3.2 It is known that high-energy photons can also produce displacement damage effects that may be similar to those produced by neutrons. These effects are known to be much less at the belt line of a light water reactor pressure vessel than those induced by neutrons. The same has not been proven for all locations within vessel support structures. Therefore, it may be prudent to apply coupled neutron-photon transport methods and photon-induced displacement cross sections to determine whether gamma-induced dpa exceeds the screening level of 3.0 × 10–4 used in this practice for neutron exposures. (See 1.3.)1.1 This practice covers procedures for monitoring the neutron radiation exposures experienced by ferritic materials in nuclear reactor vessel support structures located in the vicinity of the active core. This practice includes guidelines for:1.1.1 Selecting appropriate dosimetric sensor sets and their proper installation in reactor cavities.1.1.2 Making appropriate neutronics calculations to predict neutron radiation exposures.1.2 The values stated in SI units are to be regarded as standard; units that are not SI can be found in Terminology E170 and are to be regarded as standard. Any values in parentheses are for information only.1.3 This practice is applicable to all pressurized water reactors whose vessel supports will experience a lifetime neutron fluence (E > 1 MeV) that exceeds 1 × 1017 neutrons/cm2 or exceeds 3.0 × 10−4 dpa (1).2 (See Terminology E170.)1.4 Exposure of vessel support structures by gamma radiation is not included in the scope of this practice, but see the brief discussion of this issue in 3.2.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (For example, (2).)1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E1035-18(2023)
标准名称:
Standard Practice for Determining Neutron Exposures for Nuclear Reactor Vessel Support Structures
英文名称:
Standard Practice for Determining Neutron Exposures for Nuclear Reactor Vessel Support Structures标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices