
【国外标准】 Standard Practices for Making Laboratory Heat Seals for Determination of Heat Sealability of Flexible Barrier Materials as Measured by Seal Strength
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 These practices facilitate the determination of laboratory heat sealability of flexible barrier materials. While it is necessary to have a heat seal layer that provides adequate seal strength for the application, other material properties, such as the overall construction and thickness, will impact the sealing properties of the material. These practices allow the impact of changes in material properties on heat sealability to be measured.4.2 Due to differences between a laboratory sealer and manufacturing equipment (for example, scale, size of sealing area, and processing speed), there may be a significant difference between the capability and output of a laboratory heat sealer and that of manufacturing equipment. Hence, care must be taken when applying a heat seal curve study as outlined in these practices to manufacturing equipment. The heat seal curve and the corresponding seal strength data are intended to provide a starting point for determination of sealing conditions for full scale manufacturing equipment.1.1 These practices cover laboratory preparation of heat seals. These practices also cover the treatment and evaluation of heat seal strength data for the purpose of determining heat sealability of flexible barrier materials. It does not cover the required validation procedures for the production equipment.1.2 Testing of seal strength or other properties of the heat seals formed by these practices is not included in this standard. Refer to Test Method F88 for testing heat seal strength. These practices do not apply to hot tack testing, which is covered in Test Methods F1921.1.3 The practices of this standard are restricted to preparing heat seals using a sealer employing hot-bar or impulse sealing methods, or both.1.4 These practices are intended to assist in establishing starting relationships for sealing flexible barrier materials. Additional guidance may be needed on how to set up sealing conditions for flexible barrier materials on commercial/production sealing equipment.1.5 Seals may be made between webs of the same or dissimilar materials. The individual webs may be homogeneous in structure or multilayered (coextruded, coated, laminated, and so forth).1.6 Strength of the heat seal as measured by Test Method F88 is the sole criterion for assessing heat sealability employed in these practices.1.7 Other aspects of heat sealability, such as seal continuity, typically measured by air-leak, dye penetration, visual examination, microorganism penetration, or other techniques, are not covered by these practices.1.8 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2029-16(2021)
标准名称:
Standard Practices for Making Laboratory Heat Seals for Determination of Heat Sealability of Flexible Barrier Materials as Measured by Seal Strength
英文名称:
Standard Practices for Making Laboratory Heat Seals for Determination of Heat Sealability of Flexible Barrier Materials as Measured by Seal Strength标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E423-71(2019) Standard Test Method for Normal Spectral Emittance at Elevated Temperatures of Nonconducting Specimens
- ASTM E424-71(2023) Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials
- ASTM E431-96(2022) Standard Guide to Interpretation of Radiographs of Semiconductors and Related Devices
- ASTM E433-71(2023) Standard Reference Photographs for Liquid Penetrant Inspection
- ASTM E434-10(2020) Standard Test Method for Calorimetric Determination of Hemispherical Emittance and the Ratio of Solar Absorptance to Hemispherical Emittance Using Solar Simulation
- ASTM E436-03(2021) Standard Test Method for Drop-Weight Tear Tests of Ferritic Steels
- ASTM E438-92(2024) Standard Specification for Glasses in Laboratory Apparatus
- ASTM E439-23 Standard Test Methods for Chemical Analysis of Beryllium
- ASTM E445/E445M-15(2019) Standard Test Method for Stopping Distance on Paved Surfaces Using a Passenger Vehicle Equipped with Full-Scale Tires
- ASTM E446-20 Standard Reference Radiographs for Steel Castings Up to 2 in. (50.8 mm) in Thickness
- ASTM E45-18a(2023) Standard Test Methods for Determining the Inclusion Content of Steel
- ASTM E452-02(2023) Standard Test Method for Calibration of Refractory Metal Thermocouples Using a Radiation Thermometer
- ASTM E454-12(2021) Standard Specification for Industrial Perforated Plate and Screens (Square Opening Series)
- ASTM E455-19 Standard Test Method for Static Load Testing of Framed Floor or Roof Diaphragm Constructions for Buildings
- ASTM E457-08(2020) Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter