
【国外标准】 Standard Test Method for Compaction and Shear Properties of Bituminous Mixtures by Means of the U.S. Corps of Engineers Gyratory Testing Machine (GTM) (Withdrawn 2020)
本网站 发布时间:
2024-02-28
- ASTM D3387-11
- Withdrawn, No replacement
- 定价: 0元 / 折扣价: 0 元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
1.1 This method employs a testing machine (Fig. 1) that generates a precisely controlled gyratory kneading process which is used to prepare and test specimens of bituminous paving mixtures. This method is intended for use in bituminous mixtures design and control testing as well as accelerated traffic simulation. The objective is to compact to the ultimate in place density under the anticipated vertical stress while monitoring the process in terms of unit mass, and shearing resistance including the plastic properties. Particular attention is given to the development of the plastic properties associated with the compaction phenomenon. The maximum permissible bitumen content is indicated directly by the first evidence of a progressive increase in shear strain (as indicated by a progressive increase in the gyratory angle) accompanied by a progressive reduction in shear strength (as indicated by a progressive reduction in roller pressure.) The procedures described here are for mix design and plant control as well as accelerated traffic simulation.1.2 This test method covers two separate modes of operation of the Gyratory Testing Machine (GTM), namely: (1) GTM oil-filled roller mode; and (2) GTM air-filled roller mode. With the air filled roller, the GTM machine angle varies according to the resistance encountered during the gyratory kneading process. Thus the GTM using the air-filled roller is considered a better mechanical analog of the interaction between pneumatic tire and pavement structure.1.3 This test method is for use with mixtures containing asphalt cement, asphalt binder cutback asphalt, asphalt emulsion. Test molds are available in 4- in. (101.6 mm), 6-in. ( 152.4 mm), and 8-in. (203.2 mm)diameters with corresponding height of 8-in (203.2 mm), 10-in.(254.0 mm), and 12-in. (304.8 mm) respectively. These molds can accommodate maximum particle sizes of 1 in. (25.4 mm) 1.5-in. (38.1 mm) and 2.0-in. (50.8 mm) respectively.1.4 Units—The values stated in inch pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.6 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.FIG. 1 Largest Model of Gyratory Testing Machine
标准号:
ASTM D3387-11
标准名称:
Standard Test Method for Compaction and Shear Properties of Bituminous Mixtures by Means of the U.S. Corps of Engineers Gyratory Testing Machine (GTM) (Withdrawn 2020)
英文名称:
Standard Test Method for Compaction and Shear Properties of Bituminous Mixtures by Means of the U.S. Corps of Engineers Gyratory Testing Machine (GTM) (Withdrawn 2020)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E423-71(2019) Standard Test Method for Normal Spectral Emittance at Elevated Temperatures of Nonconducting Specimens
- ASTM E424-71(2023) Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials
- ASTM E431-96(2022) Standard Guide to Interpretation of Radiographs of Semiconductors and Related Devices
- ASTM E433-71(2023) Standard Reference Photographs for Liquid Penetrant Inspection
- ASTM E434-10(2020) Standard Test Method for Calorimetric Determination of Hemispherical Emittance and the Ratio of Solar Absorptance to Hemispherical Emittance Using Solar Simulation
- ASTM E436-03(2021) Standard Test Method for Drop-Weight Tear Tests of Ferritic Steels
- ASTM E438-92(2024) Standard Specification for Glasses in Laboratory Apparatus
- ASTM E439-23 Standard Test Methods for Chemical Analysis of Beryllium
- ASTM E445/E445M-15(2019) Standard Test Method for Stopping Distance on Paved Surfaces Using a Passenger Vehicle Equipped with Full-Scale Tires
- ASTM E446-20 Standard Reference Radiographs for Steel Castings Up to 2 in. (50.8 mm) in Thickness
- ASTM E45-18a(2023) Standard Test Methods for Determining the Inclusion Content of Steel
- ASTM E452-02(2023) Standard Test Method for Calibration of Refractory Metal Thermocouples Using a Radiation Thermometer
- ASTM E454-12(2021) Standard Specification for Industrial Perforated Plate and Screens (Square Opening Series)
- ASTM E455-19 Standard Test Method for Static Load Testing of Framed Floor or Roof Diaphragm Constructions for Buildings
- ASTM E457-08(2020) Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter