
【国外标准】 Standard Practice for Acousto-Ultrasonic Assessment of Filament-Wound Pressure Vessels
本网站 发布时间:
2024-02-28

适用范围:
4.1 The AU method should be considered for vessels that are proven to be free of major flaws or discontinuities as determined by conventional techniques. The AU method may be used for detecting major flaws if other methods are deemed impractical. It is important to use methods such as immersion pulse-echo ultrasonics (Practice E1001) and acoustic emission (Practice E1067) to ascertain the presence of major flaws before proceeding with AU.4.2 The AU method is intended almost exclusively for materials characterization by assessing the collective effects of dispersed defects and subcritical flaw populations. These are material aberrations that influence AU measurements and also underlie mechanical property variations, dynamic load response, and impact and fracture resistance.74.3 The AU method can be used to evaluate laminate quality using access to only one surface, the usual constraint imposed by closed pressure vessels. For best results, the AU probes must be fixtured to maintain the probe orientation at normal incidence to the curved surface of the vessel. Given these constraints, this practice describes a procedure for automated AU scanning using water squirters to assess the serviceability and reliability of filament-wound pressure vessels.81.1 This practice covers a procedure for acousto-ultrasonic (AU) assessment of filament-wound pressure vessels. Guidelines are given for the detection of defect states and flaw populations that arise during materials processing or manufacturing or upon exposure to aggressive service environments. Although this practice describes an automated scanning mode, similar results can be obtained with a manual scanning mode.1.2 This procedure recommends technical details and rules for the reliable and reproducible AU detection of defect states and flaw populations. The AU procedure described herein can be a basis for assessing the serviceability of filament-wound pressure vessels.1.3 The objective of the AU method is primarily the assessment of defect states and diffuse flaw populations that influence the mechanical strength and ultimate reliability of filament-wound pressure vessels. The AU approach and probe configuration are designed specifically to determine composite properties in lateral rather than through-the-thickness directions.21.4 The AU method is not for flaw detection in the conventional sense. The AU method is most useful for materials characterization, as explained in Guide E1495, which gives the rationale and basic technology for the AU method. Flaws and discontinuities such as large voids, disbonds, or extended lack of contact of interfaces can be found by other nondestructive examination (NDE) methods such as immersion pulse-echo ultrasonics.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this practice.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E1736-15(2022)
标准名称:
Standard Practice for Acousto-Ultrasonic Assessment of Filament-Wound Pressure Vessels
英文名称:
Standard Practice for Acousto-Ultrasonic Assessment of Filament-Wound Pressure Vessels标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D817-12(2019) Standard Test Methods of Testing Cellulose Acetate Propionate and Cellulose Acetate Butyrate
- ASTM D8170-20 Standard Guide for Using Disposable Handheld Soil Core Samplers for the Collection and Storage of Soil for Volatile Organic Analysis
- ASTM D8171-18 Standard Test Methods for Density Determination of Flax Fiber
- ASTM D8174-18 Standard Test Method for Finite Flash Point Determination of Liquid Wastes by Small-Scale Closed Cup Tester
- ASTM D8176-18(2023) Standard Test Method for Mechanically Tapped Density of Activated Carbon (Powdered and Fine Mesh)
- ASTM D8180-23 Standard Specification for Rerefined Mineral Insulating Liquid Used in Electrical Apparatus
- ASTM D8181-19 Standard Specification for Microemulsion Blendstock for Preparing Microemulsion Test Fuel Oils
- ASTM D8186-18 Standard Test Method for Measurement of Impurities in Graphite by Electrothermal Vaporization Inductively Coupled Plasma Optical Emission Spectrometry (ETV-ICP OES)
- ASTM D8188-23 Standard Test Method for Determination of Density and Relative Density of Asphalt, Semi-Solid Bituminous Materials, and Soft-Tar Pitch by Use of a Digital Density Meter (U-Tube)
- ASTM D8192-23 Standard Test Method for Hardness in Colored and Colorless Water
- ASTM D8195-18 Standard Classification System and Basis for Specification for Polyethylene Terephthalate Film and Sheeting
- ASTM D8198-18 Standard Specification for Hydraulically Applied 100 % Wood Fiber Mulches
- ASTM D8199-20 Standard Test Method for Determining the Specific Strength of Hydraulically Applied Fiber Matrix Products for Erosion Control
- ASTM D820-93(2023) Standard Test Methods for Chemical Analysis of Soaps Containing Synthetic Detergents
- ASTM D8200-22 Standard Practice for Creating a Correlation to Compare Particle Size Distribution Results of Proppants by Dynamic Imaging Analyzers and Sieves