
【国外标准】 Standard Test Method for Determining Particle Size Distribution of Alumina or Quartz by Laser Light Scattering
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 It is important to recognize that the results obtained by this method or any other method for particle size distribution utilizing different physical principles may disagree. The results are strongly influenced by the physical principles employed by each method of particle size analysis. The results of any particle sizing method should be used only in a relative sense, and should not be regarded as absolute when comparing results obtained by other methods.4.2 Light scattering theory that is used for determination of particle size has been available for many years. Several manufacturers of testing equipment have units based on these principles. Although each type of testing equipment utilizes the same basic principles for light scattering as a function of particle size, different assumptions pertinent to applications of the theory and different models for converting light measurements to particle size may lead to different results for each instrument. Therefore, the use of this test method cannot guarantee directly comparable results from the various manufacturers' instruments.4.3 Manufacturers and purchasers of alumina and quartz will find the method useful to determine particle size distributions for materials specifications, manufacturing control, and research and development.1.1 This test method covers the determination of particle size distribution of alumina or quartz using laser light-scattering instrumentation in the range from 0.1 to 500 μm.1.2 The procedure described in this test method may be applied to other nonplastic ceramic powders. It is at the discretion of the user to determine the method's applicability.1.3 This test method applies to analysis using aqueous dispersions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 Quartz has been classified by IARC as a Group I carcinogen. For specific hazard information in handling this material, see the supplier's Material Safety Data Sheet.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1070-01(2020)
标准名称:
Standard Test Method for Determining Particle Size Distribution of Alumina or Quartz by Laser Light Scattering
英文名称:
Standard Test Method for Determining Particle Size Distribution of Alumina or Quartz by Laser Light Scattering标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASC X9 IR 01-2019 Informative Report - Quantum Computing Risks to the Financial Services Industry
- ASC X9 TR 51-2020 Levies Companion Document Uniform Adoption of X9.129 for Levies Version 3.0
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes