
【国外标准】 Standard Practice for Determining the Integrity of Factory Seams Used in Joining Manufactured Flexible Sheet Geomembranes (Withdrawn 2008)
本网站 发布时间:
2024-02-28
- ASTM D4545-86(1999)
- Withdrawn, No replacement
- 定价: 0元 / 折扣价: 0 元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
The increased use of geomembranes as barrier materials to restrict liquid migration from one location to another in soil and rock, and the large number of seam methods and types used in joining these geomembrane sheets, has created a need for standard tests by which the various seams can be compared and the quality of the seam systems can be evaluated. This practice is intended to meet such a need.1.1 This practice is intended as a summary of destructive and nondestructive quality control test methods for determining the integrity of factory fabricated seams used in the joining of flexible sheet materials. This practice outlines the test procedures available for determining the quality of bonded seams. Tests chosen to be performed shall be selected from the nondestructive and destructive tests for their specificity to the liner system and the design application. These test methods are applicable to the seaming methods commonly used on manufactured flexible sheet geomembranes that are scrim-reinforced or nonreinforced. 1.2 The types of factory seams covered by this practice include the following: 1.2.1 Thermally Bonded Seams: 1.2.1.1 Dielectric -A dielectric seam is produced by clamping two lapped sheets of polymeric membrane between two conductive bars and applying an electric current to the bars, thus producing a field that generates friction heat at the interface between the two sheets to melt the surfaces. The pressure of the clamping bars creates a homogeneous bond which is allowed to cool by cutting off the electric current, while still under pressure. 1.2.1.2 Hot Air -A hot air seam is produced by applying high temperature air or gas between two polymeric sheet surfaces, thus melting the surfaces, at which time pressure is applied to form a homogeneous bond between the two membrane surfaces. 1.2.1.3 Hot Wedge (or Knife) -A hot wedge seam is produced by melting the two intimate surfaces by running a hot metal wedge between the surfaces, followed immediately by pressure to form a homogeneous bond. 1.2.1.4 Extrusion -A bond seam is produced by extruding molten parent material between or at the edge of two overlapped polymer sheet materials to effect a homogeneous melt between the two sheets to be joined. Hot air is sometimes applied between the two sheets to bring their temperature close to the melt point. The extrudate heat then melts the two preheated surfaces to effect the homogeneous bond. 1.2.2 Solvent Bonded Seams -A solvent is used to soften the surfaces to be bonded, followed by pressure to form a homogeneous bond. 1.2.3 Bodied Solvent Bonded Seams -The parent lining polymer material is dissolved in a solvent that is then applied in the same manner as a straight solvent, thus effecting a homogeneous bond. 1.2.4 Cured or Vulcanized Seams -These are thermally bonded seams that are produced prior to vulcanization of a cured ribbon sheet. A homogeneous bond is obtained by curing the seam along with the parent material blanket. 1.2.5 Adhesive Bonded or Cemented Seams, Taped Seams, and Waterproofed Sewn Seams -These seams are rarely made at the factory during the fabrication process and are generally limited to field installation seams. Adhesive bonded and taped seams provide a means, although non-homogeneous, of joining cured sheets. Waterproofed sewn seams are used with geotextiles, which may be laminated to a geomembrane film. 1.3 The types of factory seams covered by this practice include the following seam constructions: 1.3.1 Lap Seams -One sheet overlaps the other by a recommended minimum amount, with the bonded area between or at the edge of the two sheets. 1.3.2 Cap-Stripped Seams -A separate strip of the parent sheet material is bonded to both sheets covering the lap seam. 1.3.3 Butt Seams, Envelope Seams, and Standing Seams -These seams are not commonly used in factory seam fabrication. 1.4 The values stated in SI units are to be regarded as the standard. 1.5 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM D4545-86(1999)
标准名称:
Standard Practice for Determining the Integrity of Factory Seams Used in Joining Manufactured Flexible Sheet Geomembranes (Withdrawn 2008)
英文名称:
Standard Practice for Determining the Integrity of Factory Seams Used in Joining Manufactured Flexible Sheet Geomembranes (Withdrawn 2008)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4611-16 Standard Test Method for Specific Heat of Rock and Soil
- ASTM D4614-11(2019) Standard Specification for Ethyl Acetate (All Grades)
- ASTM D4616-23 Standard Test Method for Microscopical Analysis by Reflected Light and Determination of Mesophase in a Pitch
- ASTM D4618-92(2017) Standard Specification for Design and Fabrication of Flue Gas Desulfurization System Components for Protective Lining Application
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products