
【国外标准】 Standard Test Method for Twist in Single Spun Yarns by the Untwist-Retwist Method
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method is used for acceptance testing in the trade for economic reasons even though it is less accurate than the direct method, Test Method D1423.5.1.1 If there are differences or practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if their is a statistical bias between them, using competent statistical assistance. As a minimum, the test samples should be used that are as homogeneous as possible, that are drawn from the material from which the disparate test results are obtained, and that are assigned randomly in equal numbers to each laboratory for testing. Other materials with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.5.2 The “setting” of twist in some fibers causes excessive contraction when the yarn is retwisted in the reverse direction. Therefore, the number of turns required to bring the specimen back to its original length may be less than the number of turns removed in untwisting. This effect may be partially offset by the use of higher pretensioning loads; but this increases the danger of stretching the yarn. Little information is available on the correct tensions to use for yarns made from different fibers or with different amounts of twist.5.3 In addition to being less tedious, this test method requires fewer specimens than the direct-counting method and the results may be sufficiently accurate for certain purposes. This test method can be useful in those cases where the main objective is to measure variations from an average value. Another possible application is where a large amount of twist testing is required on yarns of similar type and twist. In this case preliminary tests comparing this method and the direct method could be used to determine the correct pretension.5.4 Twist has important effects on the physical properties of yarn. Low-twist yarn is lofty and is usually preferred for knitting because of its softness, covering power, and warmth. Increasing the amount of twist causes an increase in yarn strength by increasing fiber cohesion, but as the twist angle increases beyond an optimum point, strength decreases due to a loss in effective fiber contribution. Maximum yarn strength is obtained by inserting a medium amount of twist to obtain an optimum balance between these two opposing forces. High twist produces yarns of high density (“hard” or “wiry”) and high elongation and may improve the abrasion and impact resistance of fabrics.5.5 The optimum twist for either manufacturing efficiency or physical properties usually increases as staple length decreases.5.6 The twist in a yarn before it is packaged may be different from that of the yarn after it has been withdrawn from the package because of changes in tension and the effect of the method of withdrawal. Withdraw the yarn from the package in the direction of normal use, either from the side or over-end. If the yarn is withdrawn over-end, a slight increase or decrease in twist will take place, depending upon the direction of the twist in the yarn, the direction of winding on the package, and the length of the turn (or wrap) on the package.NOTE 2: The difference in twist between unwinding from the side and over-end is 1/πd, where d is the diameter of the package.4 Thus, for a 25-mm [1-in.] diameter package, the difference would be about 13 tpm or about one third tpi.5.7 When a yarn is taken from a more complex yarn structure or from a fabric, the resultant twist should be considered only an approximation of the original value because of alterations that may have occurred as a result of the effects of unwinding, handling, and mechanical strains met in processing.1.1 This test method2 describes the determination of twist in single spun yarns when only an approximation of the true twist is required.NOTE 1: For a more accurate method see Test Method D1423.1.2 This test method is applicable to spun single yarns in continuous lengths, and also to spun yarns raveled from fabrics, provided specimens at least 200 mm [8 in.] long can be obtained.1.3 This test method has been found satisfactory for use in determining the approximate twist content in single ring spun yarns of all types and fiber contents, but not in open-end spun yarns.1.4 This specification shows the values in both inch-pound units and SI units. The “inch-pound” units is the technically correct name for the customary units used in the United States. The “SI” units is the technically corrected name for the system of metric units known as the International System of Units. The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D1422/D1422M-13(2020)
标准名称:
Standard Test Method for Twist in Single Spun Yarns by the Untwist-Retwist Method
英文名称:
Standard Test Method for Twist in Single Spun Yarns by the Untwist-Retwist Method标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 60745.2.13:2010/Amdt 1:2011 Hand-held motor-operated electric Tools - Safety Particular requirements for chain saws
- AS/NZS 61000.4.13:2006 Electromagnetic compatibility (EMC) Testing and measurement techniques - Harmonics and interharmonics including mains signalling at a.c. power port, low frequency immunity tests
- AS/NZS CISPR 13:2003 Sound and television broadcast receivers and associated equipment - Radio disturbance characteristics - Limits and methods of measurement
- ASC X9 TR 51-2020 Levies Companion Document Uniform Adoption of X9.129 for Levies Version 3.0
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins