
【国外标准】 Standard Test Method for Using Reflectance Spectra to Produce an Index of Temperature Rise in Polymeric Siding
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Heat buildup of polymeric building products due to absorption of energy from the sun may lead to distortion problems. Test Method Test Method D4803 was developed to predict a building product’s heat buildup (temperature rise). It compares the relative temperature changes of a pigmented PVC product and a PVC panel containing carbon black when exposed to an infrared heat lamp. Based on experimental results that determined the maximum temperature for this black panel under both solar exposure and in the laboratory test, a method for determining the exterior temperature rise and heat buildup for a test panel was developed. This test has shown to be useful and reliable but is time consuming and requires controlled conditions to minimize sources of variation.5.2 This test method uses a spectrophotometer to measure a specimen’s reflectance in the ultraviolet, visible, and near infrared region and uses the spectral power distribution of the heat lamp specified in Test Method D4803 to determine an intensity factor, which is an index of the relative spectral energy absorption by the specimen.5.2.1 The temperature rise that would occur under an Test Method D4803 test is proportional to this intensity factor. An equation has been derived from the correlation of the intensity factor and temperature rise data obtained from Test Method D4803 testing of samples with a wide range of color and lightness. A total of 99 samples were studied and represent samples with the lowest to highest temperature rise. Linear regression analysis yields a R2 correlation coefficient of 0.98.5.2.2 The procedure in Appendix X1 allows prediction of temperature rise that would result from testing of the same sample under Test Method D4803.5.2.3 As this procedure is a correlation to results obtained by Test Method D4803, it is a method that yields a relative temperature rise compared to black under certain defined severe conditions, but does not predict actual field application temperatures of the product. These product temperatures are influenced by incident angle of the sun, clouds, wind speed, insulation, installation behind glass, etc.5.3 The intensity factor itself is a dimensionless index of the relative energy absorption of the specimen, without conversion to a temperature rise. It can be used to compare the heat buildup characteristics of different colors, or different candidate formulations for the same color. It can also be used to categorize color into ranges of intensity factor, to be used as a basis for testing of full siding products for resistance to thermal distortion.1.1 This test method uses reflectance spectra from the ultraviolet, visible, and near infrared region to produce an index of the temperature rise of polymeric siding above ambient temperature that occurs due to absorption of the sun’s energy.1.2 The test method determines the intensity factor of a sample color. The intensity factor is a function of the sample’s reflectance spectra and the energy output of the heat lamp used in the test method Test Method D4803.1.3 Appendix X1 provides a method for using the intensity factor to determine the maximum temperature rise of a sample under severe solar exposure.1.3.1 A correlation between intensity factor and heat buildup (temperature rise) as predicted by Test Method D4803 exists.1.3.2 The heat buildup (temperature rise) for a polymeric building product specimen is determined from its reflectance spectra and the correlation’s regression equation.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7990-21
标准名称:
Standard Test Method for Using Reflectance Spectra to Produce an Index of Temperature Rise in Polymeric Siding
英文名称:
Standard Test Method for Using Reflectance Spectra to Produce an Index of Temperature Rise in Polymeric Siding标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D7989-21 Standard Practice for Demonstrating Equivalent In-Plane Lateral Seismic Performance to Wood-Frame Shear Walls Sheathed with Wood Structural Panels
- 下一篇: ASTM D7991-22 Standard Test Method for Determining Aerobic Biodegradation of Plastics Buried in Sandy Marine Sediment under Controlled Laboratory Conditions
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process