
【国外标准】 Standard Practice for Specifying an Equivalent 3-Second Duration Design Loading for Blast Resistant Glazing Fabricated with Laminated Glass
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This practice provides a design load suitable for sizing blast resistant glazing comprised of laminated glass or insulating glass fabricated with laminated glass.5.2 Blast resistant glazing comprised of laminated glass or insulating glass fabricated with laminated glass shall be sized to resist the 3-second duration equivalent design loading from this standard practice using the procedures described in Practice E1300.5.3 In the event a blast loading does not occur to blast resistant glazing comprised of laminated glass or insulating glass fabricated with laminated glass sized using the 3-second duration loading determined herein, the blast resistant glazing will have a probability of breakage less than or equal to 8 lites per 1000 at the first occurrence of a loading equal to the 3-second duration design loading determined herein.5.4 Blast resistant glazing designed to resist the 3-second equivalent load as determined herein, when properly supported as part of a blast resistant glazing system, is designed to perform to minimal hazard as defined in Test Method F2912.1.1 This practice sets forth a method to specify an equivalent 3-second design loading suitable to use with Practice E1300 to select the thickness and type of blast resistant glazing fabricated with laminated glass to glaze a fenestration. Glass plies used to construct laminated glass are recommended to be either annealed or heat strengthened glass. This analytical method for glazing should be used with caution for glazing panels larger than 1.8 m by 2.4 m (6 ft by 8 ft) as this size panel exceeds database of testing upon which this standard is based.1.2 This practice applies to blast resistant glazing fabricated using laminated glass only, including single laminated glass and insulating glass fabricated with laminated glass. As a minimum, insulating glass shall use laminated glass for the inboard (protected side) lite.1.3 This practice assumes that blast resistant glazing shall be attached to its supporting frame using a captured bite so that it does not detach in the event of fracture due to a blast event.1.4 Blast resistant glazing designed using this practice recommends the use of annealed or heat strengthened glass plies for the laminated glass. Blast testing has shown that use of fully tempered glass plies, when fractured during a blast event, have poorer post blast performance than annealed or heat strengthened glass plies. Laminated glass fabricated with fully tempered glass plies has a tendency to leave the supporting glazing system frame after fracture whereas laminated glass fabricated with annealed or heat strengthened glass plies will remain in the frame and absorb remaining load through tensile membrane behavior. Use of the annealed or heat strengthened glass plies will also reduce the amount of load transferred into the structure.1.5 The equivalent 3-second design load as determined herein shall not apply to the design of monolithic glazing, plastic glazing, or security film applied to existing glazing configurations in an attempt to achieve blast resistance.1.6 The values stated in SI units are to be regarded as the standard. Values given in parentheses are for information only. For conversion of quantities in various systems of measurements to SI units refer to ANSI IEEE/SI 10.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2248-19
标准名称:
Standard Practice for Specifying an Equivalent 3-Second Duration Design Loading for Blast Resistant Glazing Fabricated with Laminated Glass
英文名称:
Standard Practice for Specifying an Equivalent 3-Second Duration Design Loading for Blast Resistant Glazing Fabricated with Laminated Glass标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 1462.19(Int):1999 Methods of test for plastics pipes and fittings C-Ring test for fracture toughness of PVC pipes
- AS/NZS 2111.19.2:1996 (R2016)/Amdt 1:1998 Textile floor coverings - Tests and measurements - Colourfastness tests - Shampoo solution
- AS/NZS 4456.19:2003/Amdt 1:2004 Masonry units, segmental pavers and flags - Methods of test Determining of bow
- AS/NZS 60745.2.19:2011 Hand-held motor-operated electric tools - Safety Particular requirements for jointers
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins