
【国外标准】 Standard Test Method for Electrochemical Measurement of Diffusible Hydrogen in Steels (Barnacle Electrode)
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 The critical level of hydrogen in steels is that hydrogen which can build up to high concentrations at points of high triaxial stress causing embrittlement of the steel which can lead to catastrophic damage. This hydrogen can enter by various means, such as during pickling and electroplating. Means of reducing this hydrogen during processing are given in Specification B766 and Practices B183 and B242. It is still necessary, however, to know how effective these methods are. Though the ultimate reason for measuring this hydrogen is to relate it to embrittlement, this is not within the scope of this test method. As susceptibility to hydrogen embrittlement is a function of alloy type, heat treatment, intended use,and so forth, the tolerance for hydrogen must be determined by the user according to Method F519.4.2 Though the actual hydrogen concentration is not determined in this test method, the current densities have been shown to be useful as an indication of relative hydrogen concentrations (1-3),3 and therefore the degree of hydrogen embrittlement (1,2). Thus, measurements can be compared to one another (see 4.1 and 7.1).4.3 This test method is applicable as a quality control tool for processing (such as to monitor plating and baking) or to measure hydrogen uptake caused by corrosion.4.4 This test method is nondestructive; however, if there is a coating, it must be removed by a method which has been demonstrated to neither damage the steel nor introduce hydrogen to make the measurement.4.5 This test method is also applicable to situations producing continuous hydrogen permeation, such as high pressure hydrogen cylinders or corrosion processes. The results, however, would require a different treatment and interpretation (4).4.6 This test method is also applicable to small parts, such as fasteners. The technique, procedure, and interpretation would, however, have to be altered.4.7 Use of this test method on austenitic stainless steels and other face centered cubic (FCC) alloys would require different measurement times and interpretation of results because of differing kinetics.4.8 This test method can be used on slightly curved surfaces as long as the gasket defines a reproducible area. The area calculation must, however, be changed.1.1 This test method covers the procedure for measuring diffusible hydrogen in steels by an electrochemical method.1.2 This test method is limited to carbon or alloy steels, excluding austenitic stainless steels.1.3 This test method is limited to flat specimens to which the cell can be attached (see 4.6 and 4.8).1.4 This test method describes testing on bare or plated steel after the plate has been removed (see 4.4).1.5 This test method is limited to measurements at room temperature, 20 to 25°C (68 to 77°F).1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F1113-87(2017)
标准名称:
Standard Test Method for Electrochemical Measurement of Diffusible Hydrogen in Steels (Barnacle Electrode)
英文名称:
Standard Test Method for Electrochemical Measurement of Diffusible Hydrogen in Steels (Barnacle Electrode)标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices