
【国外标准】 Standard Practice for Continuity Verification of Liquid or Sheet Linings Applied to Concrete Substrates
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The electrical conductivity of concrete is primarily influenced by the presence of moisture. Other factors, which affect the electrical continuity of concrete structures, include the following:5.1.1 Presence of metal rebars,5.1.2 Cement content and type,5.1.3 Aggregate types,5.1.4 Admixtures,5.1.5 Porosity within the concrete,5.1.6 Above or below grade elevation,5.1.7 Indoor or outdoor location,5.1.8 Temperature and humidity, and5.1.9 Age of concrete.5.2 The electrical conductivity of concrete itself may be successfully used for high-voltage continuity testing of linings applied directly with no specific conductive underlayment installed. However, the voltage required to find a discontinuity may vary greatly from point to point on the structure. This variance may reduce the test reliability.5.3 Although the most common conductive underlayments are liquid primers applied by trowel, roller, or spray, and which contain carbon or graphite fillers, others may take the form of the following:5.3.1 Sheet-applied graphite veils,5.3.2 Conductive polymers,5.3.3 Conductive graphite fibers,5.3.4 Conductive metallic fibers, and5.3.5 Conductive metallic screening.5.4 Liquid-applied conductive underlayments may be desirable as they can serve to address imperfections in the concrete surface and provide a better base for which to apply the lining.5.5 This practice is intended for use only with new linings applied to concrete substrates. Inspecting a lining previously exposed to an immersion condition could result in damaging the lining or produce an erroneous detection of discontinuities due to permeation or moisture absorption of the lining. Deposits may also be present on the surface causing telegraphing. The use of a high voltage tester on a previously exposed lining is not recommended because of possible spark through which will damage an otherwise sound lining. A low voltage tester can be used but could produce erroneous readings.5.6 The user may consider this practice when performance requirements of the lining in a specified chemical environment require assurance of a lining free of discontinuities.5.7 Factors affecting the dielectric properties and test voltage shall be considered. Some factors are the curing time of liquid-applied linings; the possible presence of electrically conductive fillers or solvents, or both; the possible presence of air inclusions or voids; and the compatibility of conductive underlayments with the specified lining.5.8 A pulsed dc high voltage may cause a lining to breakdown at a lower voltage than would be the case for a continuous dc voltage.1.1 This practice covers procedures that may be used to allow the detection of discontinuities in nonconductive linings or other non-conductive coatings applied to concrete substrates.1.2 Discontinuities may include pinholes, internal voids, holidays, cracks, and conductive inclusions.1.3 This practice describes detection of discontinuities utilizing a high voltage spark tester using either pulsed or continuous dc voltage.NOTE 1: For further information on discontinuity testing refer to NACE Standard SP0188-2006 or Practice D5162.1.4 This practice describes procedures both with and without the use of a conductive underlayment.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see Section 7.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D4787-13(2018)
标准名称:
Standard Practice for Continuity Verification of Liquid or Sheet Linings Applied to Concrete Substrates
英文名称:
Standard Practice for Continuity Verification of Liquid or Sheet Linings Applied to Concrete Substrates标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4647/D4647M-13(2020) Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
- ASTM D465-15(2020) Standard Test Methods for Acid Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4651-14(2020) Standard Specification for Isobutane Thermophysical Property Tables
- ASTM D4653-87(2020) Standard Test Method for Total Chlorides in Leather