
【国外标准】 Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This practice covers the procedure for determining the acceptability of concrete floors for the installation of resilient flooring. It also includes suggestions for ensuring that the constructed concrete floor is acceptable for such installations but does not cover tests for adequacy of the concrete floor to perform structural requirements. A permanent, effective moisture vapor retarder, of the specified thickness and permeance, is required under all on- or below-grade concrete floors. Concrete floors for resilient floorings should be permanently dry, clean, smooth, structurally sound, and free of substances that may prevent adhesive bonding. Surface cracks, grooves, depression, control joints or other non-moving joints, and other irregularities should be filled or smoothed with latex patching or a recommended underlayment compound. The surface of the floor should be cleaned by scraping, brushing, vacuuming, or any other method. All concrete slabs should be tested for moisture regardless of age or grade level while all concrete floors should be tested for pH before installing resilient flooring.1.1 This practice covers the determination of the acceptability of a concrete floor for the installation of resilient flooring.1.2 This practice includes suggestions for the construction of a concrete floor to ensure its acceptability for installation of resilient flooring.1.3 This practice does not cover the adequacy of the concrete floor to perform its structural requirements.1.4 This practice covers the necessary preparation of concrete floors prior to the installation of resilient flooring.1.5 This practice does not supersede in any manner the resilient flooring or adhesive manufacturer's written instructions. Consult the individual manufacturer for specific recommendations.1.6 Although carpet tiles, carpet, wood flooring, coatings, films, and paints are not specifically intended to be included in the category of resilient floor coverings, the procedures included in this practice may be useful for preparing concrete floors to receive such finishes.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See 4.1.1, 7.1.1, and 7.1.2 for specific warning statements.1.8 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F710-22
标准名称:
Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring
英文名称:
Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM F71-68(1999) Standard Practice for Using the Morphological Key for the Rapid Identification of Fibers for Contamination Control in Electron Devices and Microelectronics (Withdrawn 2005)
- 下一篇: ASTM F711-17(2022) Standard Specification for Fiberglass-Reinforced Plastic (FRP) Rod and Tube Used in Live Line Tools
- 推荐标准
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices
- ASTM F3294-18 Standard Guide for Performing Quantitative Fluorescence Intensity Measurements in Cell-based Assays with Widefield Epifluorescence Microscopy
- ASTM F3295-18 Standard Guide for Impingement Testing of Total Disc Prostheses
- ASTM F330-21 Standard Test Method for Bird Impact Testing of Aerospace Transparent Enclosures
- ASTM F3300-23 Standard Test Method for Abrasion Resistance of Flexible Packaging Films Using a Reciprocating Weighted Stylus
- ASTM F3301-18a Standard for Additive Manufacturing – Post Processing Methods – Standard Specification for Thermal Post-Processing Metal Parts Made Via Powder Bed Fusion
- ASTM F3302-18 Standard for Additive Manufacturing – Finished Part Properties – Standard Specification for Titanium Alloys via Powder Bed Fusion
- ASTM F3306-19 Standard Test Method for Ion Release Evaluation of Medical Implants
- ASTM F3308/F3308M-19(2023) Standard Practice for Sampling and Testing Frequency for Recycled Materials in Polyethylene (PE) Pipe for Non-Pressure Applications