
【国外标准】 Standard Test Method for Sonic Velocity in Manufactured Carbon and Graphite Materials for Use in Obtaining an Approximate Value of Young's Modulus
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Sonic velocity measurements are useful for comparing materials with similar elastic properties, dimensions, and microstructure.5.2 Eq 1 provides an accurate value of Young’s modulus only for isotropic, non-attenuative, and non-dispersive materials of infinite dimensions. For non-isotropic graphite, Eq 1 can be modified to take into account the Poisson’s ratios in all directions. As graphite is a strongly attenuative material, the value of Young’s modulus obtained with Eq 1 will be dependent on specimen length. If the specimen lateral dimensions are not large compared to the wavelength of the propagated pulse, then the value of Young’s modulus obtained with Eq 1 will be dependent on the specimen lateral dimensions. The accuracy of the Young's modulus calculated from Eq 1 will also depend upon the uncertainty in Poisson's ratio and its impact on the evaluation of the Poisson's factor in Eq 2. However, a value for Young's modulus can be obtained for many applications, which is often in good agreement with the value obtained by other more accurate methods, such as in Test Method C747. The technical issues and typical values of corresponding uncertainties are discussed in detail in STP 1578.55.3 If the grain size of the carbon or graphite is greater than or about equal to the wavelength of the sonic pulse, the method may not be providing a value of Young’s modulus representative of the bulk material. Therefore, it would be recommended to test a lower frequency (longer wavelength) to demonstrate that the range of obtained velocity values are within an acceptable level of accuracy. Significant signal attenuation should be expected when the grain size of the material is greater than or about equal to the wavelength of the transmitted sonic pulse or the material is more porous than would be expected for an as-manufactured graphite.NOTE 1: Due to frequency dependent attenuation in graphite, the wavelength of the sonic pulse through the test specimen is not necessarily the same as the wavelength of the transmitting transducer.5.4 If the sample is only a few grains thick, the acceptability of the method’s application should be demonstrated by initially performing measurements on a series of tests covering a range of sample lengths between the proposed test length and a test length incorporating sufficient grains to adequately represent the bulk material.1.1 This test method covers a procedure for measuring the sonic velocity in manufactured carbon and graphite which can be used to obtain an approximate value of Young's modulus.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C769-15(2020)e1
标准名称:
Standard Test Method for Sonic Velocity in Manufactured Carbon and Graphite Materials for Use in Obtaining an Approximate Value of Young's Modulus
英文名称:
Standard Test Method for Sonic Velocity in Manufactured Carbon and Graphite Materials for Use in Obtaining an Approximate Value of Young's Modulus标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ANSI X9.100-160-2-2020 Magnetic Ink Printing (MICR) - Part 2 EPC Field Use
- ANSI X9.104-1-2004 (R2023) Financial transaction card originated messages - Card acceptor to acquiring host messages - Part 1: Messages, data elements and code values
- ANSI X9.104-1:2004 (R2017) Financial transaction card originated messages - Card acceptor to acquiring host messages - Part 1: Messages, data elements and code values
- ANSI X9.105-1:2009 (R2019) (Identical to ISO 8583-1:2009) Financial transaction card originated messages - Interchange message specifications -Part 1: Messages, data elements and code values
- ANSI X9.112-2-2020 Wireless Management and Published Security - Part 2: POS and ATM
- ANSI X9.117-2020 Financial Services - Mutual Authentication for Secure Remote Access
- ANSI X9.134-1-2020 Core Banking: Mobile Financial Services - General Framework
- ANSI X9.138-2020 Distributed Ledger Technologies (DLT) Terminology
- ANSI X9.141-1-2021 Financial and Personal Data Protection and Breach Notification Standard - Part 1: Data Protection
- ANSI X9.24-1-2017 Corrigendum Corrigendum to ANSI X9.24-1-2017 - Retail Financial Services Symmetric Key Management Part 1: Using Symmetric Techniques
- ANSI X9.8-1-2019/ISO 9564-1-2017 Financial services - Personal Identification Number (PIN) management and security - Part 1: Basic principles and requirements for PINs in card-based systems (Identical Adoption)
- ANSI X9.82-1-2006 (R2013) Random Number Generation Part 1: Overview and Basic Principles
- ANSI X9.92-1-2009 (R2017) Public Key Cryptography for the Financial Services Industry - Digital Signature Algorithms Giving Partial Message Recovery - Part 1: Elliptic Curve Pintsov-Vanstone Signatures (ECPVS)
- ANSI X9.99-2009 (R2020) Financial Services-Privacy Impact Assessment
- ANSI/INCITS/ISO/IEC TR 11581-1:2011[2015] Information technology - User interface icons - Part 1: Introduction to and overview of icon standards