
【国外标准】 Standard Test Method for Determination of the Linear Coefficient of Thermal Expansion of Plastic Lumber and Plastic Lumber Shapes Between –30 and 140°F (–34.4 and 60°C)
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The coefficient of linear thermal expansion, α, between temperatures T1 and T2 for a specimen whose length is L0 at the reference temperature, is given by the following equation:Where L1 and L2 are the specimen lengths at temperatures T1 and T2, respectively. α is, therefore, obtained by dividing the linear expansion per unit length by the change in temperature.5.2 The nature of most plastics and the construction applications for which plastic lumber and plastic lumber shapes are used, make –30 to 140°F (–34.4 to 60°C) a practical temperature range for linear thermal expansion measurements. Where testing outside of this temperature range or when linear thermal expansion characteristics of a particular plastic are not known through this temperature range, particular attention shall be paid to the factors mentioned in 1.2 and it is possible that special preliminary investigations by thermo-mechanical analysis, such as what is prescribed in Practice D4065 for the location of transition temperatures, will be required, in order to avoid excessive error. If such a transition point is located, a separate coefficient of expansion for a temperature range below and above the transition point shall be determined. For specification and comparison purposes (provided it is known that no transition exists in this range), the range from –30 to 140°F (–34.4 to 60°C) shall be used. (For reference, glass transition and melting point temperatures of typical resins used in plastic lumber products are given in Appendix X2 of this test method.)1.1 This test method covers the determination of the coefficient of linear thermal expansion for plastic lumber and plastic lumber shapes to two significant figures. The determination is made by taking measurements with a caliper at three discrete temperatures. At the test temperatures and under the stresses imposed, the plastic lumber shall have a negligible creep or elastic strain rate, or both, insofar as these properties would significantly affect the accuracy of the measurements.1.1.1 This test method details the determination of the linear coefficient of thermal expansion of plastic lumber and plastic lumber shapes in their “as manufactured” form. As such, this is a test method for evaluating the properties of plastic lumber or shapes as a product and not a material property test method.1.2 The thermal expansion of plastic lumber and shapes is composed of a reversible component on which it is possible to superimpose changes in length due to changes in moisture content, curing, loss of plasticizer or solvents, release of stresses, phase changes, voids, inclusions, and other factors. This test method is intended to determine the coefficient of linear thermal expansion under the exclusion of non-linear factors as far as possible. In general, it will not be possible to exclude the effect of these factors completely. For this reason, the test method can be expected to give a reasonable approximation but not necessarily precise determination of the linear coefficient of thermal expansion.1.3 Plastic lumber and plastic lumber shapes are currently made predominately with recycled plastics where the product is non-homogeneous in the cross-section. However, it is possible that this test method will also be applicable to similar manufactured plastic products made from virgin resins or other plastic composite materials.1.4 The values stated in inch-pound units are to be regarded as the standard. The SI units given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6341-21
标准名称:
Standard Test Method for Determination of the Linear Coefficient of Thermal Expansion of Plastic Lumber and Plastic Lumber Shapes Between –30 and 140°F (–34.4 and 60°C)
英文名称:
Standard Test Method for Determination of the Linear Coefficient of Thermal Expansion of Plastic Lumber and Plastic Lumber Shapes Between –30 and 140°F (–34.4 and 60°C)标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D6340-98(2007) Standard Test Methods for Determining Aerobic Biodegradation of Radiolabeled Plastic Materials in an Aqueous or Compost Environment (Withdrawn 2016)
- 下一篇: ASTM D6342-22 Standard Practice for Polyurethane Raw Materials: Determining Hydroxyl Number of Polyols by Near Infrared (NIR) Spectroscopy
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation