
【国外标准】 Standard Test Methods for Water Content and Density of Soil In situ by Time Domain Reflectometry (TDR)
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method can be used to determine the density and water content of naturally occurring soils and of soils placed during the construction of earth embankments, road fills, and structural backfills.5.2 Time domain reflectometry (TDR) measures the apparent dielectric constant (Procedure A) and the apparent dielectric constant, first voltage drop and long term voltage (V1 and Vf) (Procedure B) of soil. The apparent dielectric constant is affected significantly by the water content and density of soil, and to a lesser extent by the chemical composition of soil and pore water, and by temperature. The first voltage drop and long term voltage (V1 and Vf) are affected significantly by the water content, density, and the chemical composition of the in situ pore water, and to a lesser extent the chemical composition of the soil solids. This test method measures the gravimetric water content.5.3 Soil and pore water characteristics are accounted for in Procedure A with two calibration constants and for Procedure B with five calibration constants. The two soil constants for Procedure A are determined for a given soil by performing compaction tests in a special mold as described in Annex A2. The five soil constants for Procedure B are determined in conjunction with compaction testing in accordance with specified compaction procedures, for example, Test Method D698 as described in Annex A3. Both Procedures A and B use Test Method D2216 to determine the water contents.5.4 When following Procedure A, the water content is the average value over the length of the cylindrical mold and the density is the average value over the length of the multiple-rod probe embedded in the soil. When following Procedure B, the water content and density is the average values over the length of the multiple-rod embedded in the soil.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method may be used to determine the water content of soils and the density of soils in place using Time Domain Reflectometry.1.2 This test method applies to soils that have 30 % or less by weight of their particles retained on the 19.0-mm [3/4-in.] sieve.1.3 This test method is suitable for use as a means of acceptance for compacted fill or embankments.1.4 This test method is not appropriate for frozen soils or soils at temperatures over 40°C [100°F] and may not be suitable for organic soils, highly plastic soils, or extremely dense soils.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.5.1 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.21.6 Two alternative procedures are provided to determine the water content and the density of soil in situ:1.6.1 Procedure Ainvolves two tests in the field, an in situ test and a test in a mold containing material excavated from the in situ test location. The apparent dielectric constant is determined in both tests.1.6.2 Procedure Binvolves only an in situ test by incorporating the first voltage drop and long term voltage (V1 and Vf ) in addition to the apparent dielectric constant. While the bulk electrical conductivity can be determined from these measurements, it is not needed for the determination of water content and density.1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. For additional information consult SI10.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6780/D6780M-19
标准名称:
Standard Test Methods for Water Content and Density of Soil In situ by Time Domain Reflectometry (TDR)
英文名称:
Standard Test Methods for Water Content and Density of Soil In situ by Time Domain Reflectometry (TDR)标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4611-16 Standard Test Method for Specific Heat of Rock and Soil
- ASTM D4614-11(2019) Standard Specification for Ethyl Acetate (All Grades)
- ASTM D4616-23 Standard Test Method for Microscopical Analysis by Reflected Light and Determination of Mesophase in a Pitch
- ASTM D4618-92(2017) Standard Specification for Design and Fabrication of Flue Gas Desulfurization System Components for Protective Lining Application
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products