
【国外标准】 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Baffled Flask
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 A standard test is necessary to establish a baseline performance parameter so that dispersants can be compared, a given dispersant can be compared for effectiveness on different oils, and at different oil weathering stages, and batches of dispersant or oils can be checked for effectiveness changes with time or other factors. This test method provides a second test at higher mixing energy in addition to the Swirling Flask (Test Method F2059).5.2 Dispersant effectiveness varies with oil type, sea energy, oil conditions, salinity, and many other factors. Test results from this test method form a baseline at high mixing energy, but are not to be taken as the absolute measure of performance at sea. Actual field effectiveness could be more or less than this value.5.3 Many dispersant tests have been developed around the world. This test has been developed in recent years and provides higher mixing energies compared to other laboratory scale tests.1.1 This test method covers the procedure to determine the effectiveness of oil spill dispersants on various oils in the laboratory. This test method is not applicable to other chemical agents nor to the use of such products or dispersants in open waters.1.2 This test method covers the use of the Baffled Flask test apparatus and does not cover other apparatuses nor are the analytical procedures described in this report directly applicable to such procedures.1.3 The test results obtained using this test method are intended to provide baseline effectiveness values used to compare dispersants and oil types under conditions analogous to those used in the test.1.4 The test results obtained using this test method are effectiveness values that should be cited as test values derived from this standard test. Dispersant effectiveness values do not directly relate to effectiveness at sea or in other apparatuses. Actual effectiveness at sea is dependent on sea energy, oil state, temperature, salinity, actual dispersant dosage, and amount of dispersant that interacts with the oil.1.5 The decision to use or not use a dispersant on an oil should not be based solely on this or any other laboratory test method.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F3251-21
标准名称:
Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Baffled Flask
英文名称:
Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Baffled Flask标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4647/D4647M-13(2020) Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
- ASTM D465-15(2020) Standard Test Methods for Acid Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4651-14(2020) Standard Specification for Isobutane Thermophysical Property Tables
- ASTM D4653-87(2020) Standard Test Method for Total Chlorides in Leather