
【国外标准】 Standard Test Method for Measuring Neutron Fluence and Average Energy from 3H(d,n)4He Neutron Generators by Radioactivation Techniques
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Refer to Practice E261 for a general discussion of the measurement of fast-neutron fluence rates with threshold detectors.5.5.1 Fig. 5 (2) shows how the neutron energy depends upon the angle of scattering in the laboratory coordinate system when the incident deuteron has an energy of 150 keV and is incident on a thick and a thin tritiated target. For thick targets, the incident deuteron loses energy as it penetrates the target and produces neutrons of lower energy. A thick target is defined as a target thick enough to completely stop the incident deuteron. The two curves in Fig. 5, for both thick and thin targets, come from different sources. The dashed line calculations come from Ref (3); the solid curve calculations come from Ref (4); and the measured data come from Ref (5). The dash-dot curve and the right-hand axis give the difference between the calculated neutron energies for thin and thick targets. Computer codes are available to assist in calculating the expected thick and thin target yield and neutron spectrum for various incident deuteron energies (6).FIG. 5 Dependence of 3H(d,n)4He Neutron Energy on Angle (2)5.6 The Q-value for the primary 3H(d,n)4He reaction is +17.59 MeV. When the incident deuteron energy exceeds 3.71 MeV and 4.92 MeV, the break-up reactions 3H(d,np)3H and 3H(d,2n)3He, respectively, become energetically possible. Thus, at high deuteron energies (>3.71 MeV) this reaction is no longer monoenergetic. Monoenergetic neutron beams with energies from about 14.8 to 20.4 MeV can be produced by this reaction at forward laboratory angles (7).5.7 It is recommended that the dosimetry sensors be fielded in the exact positions where the dosimetry results are wanted. There are a number of factors that can affect the monochromaticity or energy spread of the neutron beam (7, 8). These factors include the energy regulation of the incident deuteron energy, energy loss in retaining windows if a gas target is used or energy loss within the target if a solid tritiated target is used, the irradiation geometry, and background neutrons from scattering with the walls and floors within the irradiation chamber.1.1 This test method covers a general procedure for the measurement of the fast-neutron fluence rate produced by neutron generators utilizing the 3H(d,n)4He reaction. Neutrons so produced are usually referred to as 14-MeV neutrons, but range in energy depending on a number of factors. This test method does not adequately cover fusion sources where the velocity of the plasma may be an important consideration.1.2 This test method uses threshold activation reactions to determine the average energy of the neutrons and the neutron fluence at that energy. At least three activities, chosen from an appropriate set of dosimetry reactions, are required to characterize the average energy and fluence. The required activities are typically measured by gamma-ray spectroscopy.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E496-14(2022)
标准名称:
Standard Test Method for Measuring Neutron Fluence and Average Energy from 3H(d,n)4He Neutron Generators by Radioactivation Techniques
英文名称:
Standard Test Method for Measuring Neutron Fluence and Average Energy from 3H(d,n)4He Neutron Generators by Radioactivation Techniques标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- INCITS 124-1985 (S2022) Information processing systems - Computer graphics - Graphical Kernel System (GKS) Functional Description
- INCITS 14-1983[S2011] Recorded Magnetic Tape for Information Interchange (200 CPI, NRZI) (formerly ANSI X3.14-1983 (R2001))
- INCITS 199-1991 (S2022) Information Systems - 356-mm Optical Disk Cartridge (Write-Once) - Test Methods for Media Characteristics
- INCITS 207-1991 (S2022) Office Machines and Supplies - Alphanumeric Machines - Alternate Keyboard Arrangement
- INCITS 214-1992 (S2022) Information Systems - 130-mm Write-Once Optical Disk Cartridge Using Sampled Servo and 4/15 Encoding
- INCITS 222-1997 (S2022) Information technology - High-Performance Parallel Interface - Switch Control (HIPPI-SC)
- INCITS 259-1997 (S2022) Information Technology - FDDI Station Management-2 Packet Services (SMT-2-PS)
- INCITS 278-1997 (S2022) Information Technology - Fibre distributed data interface (FDDI) - Physical Layer Repeater Protocol (PHY-REP)
- INCITS 296-1997 (S2022) Information technology - Single Byte Command Code Sets CONnection (SBCON)
- INCITS 300-1997 (S2022) Information technology - High-Performance Parallel Interface - Serial Specification (HIPPI-Serial)
- INCITS 307-1997 (S2022) Information Technology - Serial Storage Architecture - Physical Layer 2 (SSA-PH2)
- INCITS 357-2002 (S2022) Information technology - Fibre Channel Virtual Interface Architecture Mapping Protocol (FC-VI)
- INCITS 358-2002/AM 1-2007 (R2022) Information technology - BioAPI Specification (Version 1.1) - Amendment 1: Support for Biometric Fusion
- INCITS 468-2010/AM1-2012 (R2022) Information technology - Multi-media Command Set - 6 (MMC-6) - Amendment 1
- INCITS 484-2012 (R2022) Information Technology SCSI Media Changer Commands - 3