
【国外标准】 Standard Test Method for Determination of Trace Carbon Dioxide, Argon, Nitrogen, Oxygen and Water in Hydrogen Fuel by Jet Pulse Injection and Gas Chromatography/Mass Spectrometer Analysis (Withdrawn 2023)
本网站 发布时间:
2024-02-28
- ASTM D7649-19
- Withdrawn, No replacement
- 定价: 0元 / 折扣价: 0 元
- 在线阅读

适用范围:
5.1 Low operating temperature fuel cells such as proton exchange membrane fuel cells (PEMFCs) require high purity hydrogen for maximum performance. The following are the reported effects (SAE TIR J2719) of the compounds determined by this test method.5.2 Carbon Dioxide (CO2), acts largely as a diluent; however, in the fuel cell environment, CO2 can be transformed into CO.5.3 Water (H2O), is an inert impurity, as it does not affect the function of a fuel cell stack; however, it provides a transport mechanism for water-soluble contaminants, such as Na+ or K+. In addition, it may form ice on valve internal surface at cold weather or react exothermally with metal hydride used as hydrogen fuel storage.5.4 Inert Gases (N2 and Ar), do not normally react with fuel cell components or fuel cell system and are considered diluents. Diluents can decrease fuel cell stack performance.5.5 Oxygen (O2), in low concentrations is considered an inert impurity, as it does not adversely affect the function of a fuel cell stack; however, it is a safety concern for vehicle on board fuel storage as it can react violently with hydrogen to generate water and heat.1.1 This test method describes a procedure primarily for the determination of carbon dioxide, argon, nitrogen, oxygen, and water in high pressure fuel cell grade hydrogen by gas chromatograph/mass spectrometer (GC/MS) with injection of sample at the same pressure as sample without pressure reduction, which is called “Jet Pulse Injection.” The procedures described in this method were designed to measure carbon dioxide at 0.5 micromole per mole (ppmv), Argon 1 ppmv, nitrogen 5 ppmv, oxygen 2 ppmv, and water 4 ppmv.1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 The mention of trade names in standard does not constitute endorsement or recommendation for use. Other manufacturers of equipment or equipment models can be used.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7649-19
标准名称:
Standard Test Method for Determination of Trace Carbon Dioxide, Argon, Nitrogen, Oxygen and Water in Hydrogen Fuel by Jet Pulse Injection and Gas Chromatography/Mass Spectrometer Analysis (Withdrawn 2023)
英文名称:
Standard Test Method for Determination of Trace Carbon Dioxide, Argon, Nitrogen, Oxygen and Water in Hydrogen Fuel by Jet Pulse Injection and Gas Chromatography/Mass Spectrometer Analysis (Withdrawn 2023)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices