
【国外标准】 Standard Test Method for Analysis of Magnesium and Magnesium Alloys by Atomic Emission Spectrometry
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The metallurgical properties of magnesium and its alloys are highly dependant on chemical composition. Precise and accurate analyses are essential to obtaining desired properties, meeting customer specifications and helping to reduce scrap due to off-grade material.5.2 This test method is applicable to chill cast specimens as defined in Practice B953 and can also be applied to other types of samples provided that suitable reference materials are available.1.1 This test method describes the analysis of magnesium and its alloys by atomic emission spectrometry. The magnesium specimen to be analyzed may be in the form of a chill cast disk, casting, sheet, plate, extrusion or some other wrought form or shape. The elements covered in the scope of this method are listed in the table below.Element Mass Fraction Range (Wt %)Aluminum 0.001 to 12.0Beryllium 0.0001 to 0.01Boron 0.0001 to 0.01Cadmium 0.0001 to 0.05Calcium 0.0005 to 0.05Cerium 0.01 to 3.0Chromium 0.0002 to 0.005Copper 0.001 to 0.05Dysprosium 0.01 to 1.0Erbium 0.01 to 1.0Gadolinium 0.01 to 3.0Iron 0.001 to 0.06Lanthanum 0.01 to 1.5Lead 0.005 to 0.1Lithium 0.001 to 0.05Manganese 0.001 to 2.0Neodymium 0.01 to 3.0Nickel 0.0005 to 0.05Phosphorus 0.0002 to 0.01Praseodymium 0.01 to 0.5Samarium 0.01 to 1.0Silicon 0.002 to 5.0Silver 0.001 to 0.2Sodium 0.0005 to 0.01Strontium 0.01 to 4.0Tin 0.002 to 0.05Titanium 0.001 to 0.02Yttrium 0.02 to 7.0Ytterbium 0.01 to 1.0Zinc 0.001 to 10.0Zirconium 0.001 to 1.0NOTE 1: The mass fraction ranges given in the above scope are estimates based on two manufacturers observations and data provided by a supplier of atomic emission spectrometers. The range shown for each element does not demonstrate the actual usable analytical range for that element. The usable analytical range may be extended higher or lower based on individual instrument capability, spectral characteristics of the specific element wavelength being used and the availability of appropriate reference materials.1.2 This test method is suitable primarily for the analysis of chill cast disks as described in Sampling Practice B953. Other forms may be analyzed, provided that: (1) they are sufficiently massive to prevent undue heating, (2) they allow machining to provide a clean, flat surface which creates a seal between the specimen and the spark stand, and (3) reference materials of a similar metallurgical condition (spectrochemical response) and chemical composition are available.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific safety and health statements are given in Section 10.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM B954-23
标准名称:
Standard Test Method for Analysis of Magnesium and Magnesium Alloys by Atomic Emission Spectrometry
英文名称:
Standard Test Method for Analysis of Magnesium and Magnesium Alloys by Atomic Emission Spectrometry标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation