
【国外标准】 Standard Test Methods for Rubber Deterioration—Cracking in an Ozone Controlled Environment
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 The significance of these test methods lies in the ability to differentiate between the degrees of ozone resistance under the limited and specified conditions of the accelerated tests. The degree of resistance being judged by the appearance and magnitude of the formation of cracks in the surface of the subject material.4.2 In service, rubber materials deteriorate when exposed to ozone. It is imperative to have test methods in which simple, accelerated time/exposure, comparisons of the material’s ability to resist cracking caused by ozone exposure can be empirically evaluated. Such tests can be used for producer/consumer acceptance, referee purposes, research, and development.4.3 These methods are not necessarily suited for use in purchase specifications as there may be no correlation with service performance as actual service conditions (outdoor exposure) vary widely due to geographic location and, therefore, may not yield repeatable or reproducible results.1.1 These test methods are used to estimate the effect of exposure, under surface tensile strain conditions, either dynamic or static, in an atmosphere containing specified levels of ozone concentration, expressed as partial pressure (refer to Note 1), on vulcanized rubber, rubber compounds, molded or extruded soft rubber, and other specified materials, or as may be determined empirically. The effect of naturally occurring sunlight or light from artificial sources is excluded.1.2 Previously published ASTM documents Test Method D518 and Test Methods D3395 have been included in these test methods, D1149, in 2007. Please refer to Note 2.1.2.1 Test Method D518 and Test Methods D3395 have henceforth been withdrawn and superseded by Test Methods D1149. When Test Methods D1149 is cited, or otherwise referenced, a notation shall be included to this effect. Please refer to section 3.2 for the appropriate references.1.3 The specified conditions of exposure to ozone in the controlled environments are accelerated in comparison to outdoor exposure. These accelerated ozone test methods may not give results which correlate with outdoor exposure tests or service performance.1.4 All materials, instruments, or equipment used for the determination of mass, force, dimension, ozone concentration, partial pressure, temperature, velocity, and gas exchange rate shall have direct traceability to the National Institute for Standards and Technology, or other internationally recognized organization parallel in nature.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only. Many of the stated SI units are direct conversions from the U.S. Customary System to accommodate the instrumentation, practices, and procedures that existed prior to the Metric Conversion Act of 1975.1.6 This standard involves hazardous materials, specifically ozone. It may also involve hazardous operations and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: A discussion and explanation regarding the measurement of ozone concentrations based upon parts of ozone per unit of air versus partial pressure is provided in Test Methods D4575, specifically Appendices X1 and X2. Test Methods D4575 is also recommended as a source of background information regarding standards involving materials exposed to ozone.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D1149-18
标准名称:
Standard Test Methods for Rubber Deterioration—Cracking in an Ozone Controlled Environment
英文名称:
Standard Test Methods for Rubber Deterioration—Cracking in an Ozone Controlled Environment标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS CA18-1968 Installation and maintenance of portable fire extinguishers and fire hose reels
- AS/NZS 1735.18:2002 Lifts, escalators and moving walks Passenger lifts for private residence - Automatically controlled
- AS/NZS 2111.18:1997 (R2013) Textile floor coverings - Tests and measurements Burning behaviour - Tablet test at ambient temperature
- ASTM E2264-23 Standard Practice for Determining the Effects of Temperature Cycling on Fenestration Products
- ASTM E2268-04(2023) Standard Test Method for Water Penetration of Exterior Windows, Skylights, and Doors by Rapid Pulsed Air Pressure Difference
- ASTM E2269-21 Standard Test Method for Determining Argon Concentration in Sealed Insulating Glass Units using Gas Chromatography
- ASTM E2273-18 Standard Test Method for Determining the Drainage Efficiency of Exterior Insulation and Finish Systems (EIFS) Clad Wall Assemblies
- ASTM E2279-20 Standard Practice for Establishing the Guiding Principles of Property Asset Management
- ASTM E228-22 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer
- ASTM E2280-21 Standard Guide for Fire Hazard Assessment of the Effect of Upholstered Seating Furniture Within Patient Rooms of Health Care Facilities
- ASTM E2281-15(2020) Standard Practice for Process Capability and Performance Measurement
- ASTM E2282-23 Standard Guide for Defining the Test Result of a Test Method
- ASTM E2283-08(2019) Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features
- ASTM E2294-21 Standard Practice for Proof Silver Corrections in Metal Bearing Ores, Concentrates, and Related Materials by Fire Assay Gravimetry
- ASTM E2295-21 Standard Practice for Fire Assay Silver Corrections in Analysis of Metal Bearing Ores, Concentrates, and Related Metallurgical Materials by Silver Determination in Slags and Cupels