
【国外标准】 Standard Test Method for Determining In Situ Modulus of Deformation of Rock Mass Using Flexible Plate Loading Method
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Results of this type of test method are used to predict displacements in rock mass caused by loads from a structure or from underground construction. It is one of several tests that should be performed. The resulting in situ elastic modulus is commonly less than the elastic modulus determined in the laboratory.5.2 The modulus is determined using an elastic solution for a uniformly distributed load (uniform stress) over a circular area acting on a semi-infinite elastic medium.5.3 This test method is normally performed at ambient temperature, but equipment can be modified or substituted for operations at other temperatures.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection, etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the preparation, equipment, test procedure, and data reduction for determining in situ modulus of deformation of a rock mass using the flexible plate loading method.1.2 This test method is designed to be conducted in an adit or small underground chamber; however, with suitable modifications it could be conducted at the surface.1.3 This test method is usually conducted parallel or perpendicular to the anticipated axis of thrust, as dictated by the design load and to diametrically opposite surfaces.1.4 Both instantaneous deformation and primary creep can be obtained from this test method.1.5 Time-dependent tests not covered by this standard can be performed but are to be reported in another standard.1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.6.1 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.7 The values stated in inch-pound units are to be regarded as standard, except as noted below. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.1.8 The references appended to this standard contain further information on this test method.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precaution statements, see Section 8.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D4395-17
标准名称:
Standard Test Method for Determining In Situ Modulus of Deformation of Rock Mass Using Flexible Plate Loading Method
英文名称:
Standard Test Method for Determining In Situ Modulus of Deformation of Rock Mass Using Flexible Plate Loading Method标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D4394-17 Standard Test Method for Determining In Situ Modulus of Deformation of Rock Mass Using Rigid Plate Loading Method
- 下一篇: ASTM D4396-22 Standard Specification for Rigid Poly(Vinyl Chloride) (PVC) and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds for Plastic Pipe and Fittings Used in Nonpressure Applications
- 推荐标准
- AS/NZS 3200.2.17:1994/Amdt 1:1997 Approval and test specification - Medical electrical equipment - Particular requirements for safety - Remote-controlled automatically-driven gamma-ray afterloading equipment
- AS/NZS 3350.2.17:2000/Amdt 1:2001 Safety of household and similar electrical appliances Particular requirements - Blankets, pads and similar flexible heating
- AS/NZS 3350.2.17:2000/Amdt 3:2007 Safety of household and similar electrical appliances Particular requirements - Blankets, pads and similar flexible heating appliances (IEC 60335-2-17:1998, MOD)
- AS/NZS 4456.17:2003/Amdt 1:2004 Masonry units, segmental pavers and flags - Methods of test Determining initial rate of absorption (suction)
- AS/NZS 60079.17:2009/Amdt 1:2011 Explosive atmospheres Electrical installations inspection and maintenance
- AS/NZS 60335.2.17:2004/Amdt 2:2009 Household and similar electrical appliances - Safety Particular requirements for blankets, pads, clothing and similar flexible heating appliances (IEC 60335-2-17 Ed 2.2, MOD)
- AS/NZS 60598.2.17:2006 Luminaires Particular requirements - Luminaires for stage lighting, television, film and photographic studios (outdoor and indoor)(IEC 60598.2.17, Ed. 1.0 (1984) MOD)
- AS/NZS 60745.2.17:2003 Hand-held motor-operated electric tools - Safety - Particular requirements for routers and trimmers
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members