
【国外标准】 Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method is intended to measure the resistance of solid surfaces to permanent deformation under the action of a single point (stylus tip). It is a companion method to quasi-static hardness tests in which a stylus is pressed into a surface under a certain normal load and the resultant depth or impression size is used to compute a hardness number. Scratch hardness numbers, unlike quasi-static hardness numbers, involve a different combination of properties of the surface because the indenter, in this case a diamond stylus, moves tangentially along the surface. Therefore, the stress state under the scratching stylus differs from that produced under a quasi-static indenter. Scratch hardness numbers are in principle a more appropriate measure of the damage resistance of a material to surface damage processes like two-body abrasion than are quasi-static hardness numbers.5.2 This test method is applicable to a wide range of materials. These include metals, alloys, and some polymers. The main criteria are that the scratching process produces a measurable scratch in the surface being tested without causing catastrophic fracture, spallation, or extensive delamination of surface material. Severe damage to the test surface, such that the scratch width is not clearly identifiable or that the edges of the scratch are chipped or distorted, invalidates the use of this test method to determine a scratch hardness number. Since the degree and type of surface damage in a material may vary with applied load, the applicability of this test to certain classes of materials may be limited by the maximum load at which valid scratch width measurements can be made.5.3 The resistance of a material to abrasion by a single point may be affected by its sensitivity to the strain rate of the deformation process. Therefore, this test is conducted under low stylus traversing speeds. Use of a slow scratching speed also minimizes the possible effects of frictional heating.5.4 This test uses measurements of the residual scratch width after the stylus has been removed to compute the scratch hardness number. Therefore, it reflects the permanent deformation resulting from scratching and not the instantaneous state of combined elastic and plastic deformation of the surface.1.1 This test method covers laboratory procedures for determining the scratch hardness of the surfaces of solid materials. Within certain limitations, as described in this guide, this test method is applicable to metals, ceramics, polymers, and coated surfaces. The scratch hardness test, as described herein, is not intended to be used as a means to determine coating adhesion, nor is it intended for use with other than specific hemispherically-tipped, conical styli.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM G171-03(2017)
标准名称:
Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus
英文名称:
Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices
- ASTM F3294-18 Standard Guide for Performing Quantitative Fluorescence Intensity Measurements in Cell-based Assays with Widefield Epifluorescence Microscopy
- ASTM F3295-18 Standard Guide for Impingement Testing of Total Disc Prostheses
- ASTM F330-21 Standard Test Method for Bird Impact Testing of Aerospace Transparent Enclosures
- ASTM F3300-23 Standard Test Method for Abrasion Resistance of Flexible Packaging Films Using a Reciprocating Weighted Stylus
- ASTM F3301-18a Standard for Additive Manufacturing – Post Processing Methods – Standard Specification for Thermal Post-Processing Metal Parts Made Via Powder Bed Fusion
- ASTM F3302-18 Standard for Additive Manufacturing – Finished Part Properties – Standard Specification for Titanium Alloys via Powder Bed Fusion
- ASTM F3306-19 Standard Test Method for Ion Release Evaluation of Medical Implants
- ASTM F3308/F3308M-19(2023) Standard Practice for Sampling and Testing Frequency for Recycled Materials in Polyethylene (PE) Pipe for Non-Pressure Applications