
【国外标准】 Standard Guide for Conducting Hazard Analysis-Critical Control Point (HACCP) Evaluations
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 HACCP is a proactive management tool that serves to reduce hazards potentially expressed as adverse biological or environmental effects, for example, associated with chemical releases, changes in natural resource or engineering practices and their related impacts, and accidental or intentional releases of biological stressors such as invasive species.5.2 Sequential implementation of HACCP and feedback in the iterative HACCP process allows for technically-based judgments concerning, for example, natural resources or the use of natural resources. Implementing the HACCP process serves to reduce adverse effects potentially associated with a particular material or process, and provides guidance for testing and evaluation of products or processes, through a pre-emptive procedure focused on information most pertinent to a system’s characterization. For example, identification of CCPs assure that processes and practices can be managed to achieve hazard reduction. For different processes and situations, HA may be based on substantially different amounts and kinds of, for example, biological, chemical, physical, and toxicological data, but the identification of CCPs serving to reduce hazard is key to successful implementation of HACCP.5.3 HACCP should never be considered complete for all time, and continuing reassessment is a characteristic of HACCP evaluations, especially if there should be changes in, for example, production volumes of a material, or its use or disposal increases, new uses are discovered, or new information on biological, chemical, physical, or toxicological properties becomes available. Similarly, HACCP should be considered an ongoing process serving as a key component in engineering practices, for example, related to construction activities and land-use changes, and natural resource management practices, for example, related to habitat use, enhancement, and species introductions such as fish-stocking programs. Periodic review of a system’s performance will help assure that new circumstances and information receive prompt and appropriate attention.5.4 In many cases, consideration of adverse effects should not end with completion of the HA and identification of CCPs key to the development of control measures. Additional steps may subsequently include risk assessment, and decisions concerning acceptability of identified hazards and risks, and mitigation actions potentially applicable to the process or practice that initially motivated HACCP.1.1 This guide describes a stepwise procedure for using existing information, and if available, supporting field and laboratory data concerning a process, materials, or products potentially linked to adverse effects likely to occur in the environment as a result of an event associated with a process such as the dispersal of a potentially invasive species or the release of material (for example, a chemical or a physical substance) or its derivative products to the environment. Hazard Analysis-Critical Control Point (HACCP) evaluations were historically linked to food safety (Hulebak and Schlosser W. 2002 (1);2 Mortimer and Wallace 2013 (2)), but the process has increasingly found application in planning processes such as those occurring in health sciences ; Quattrin et al. 2008 (3); Hjarno et al. 2007 (4); Griffith 2006 (5) or; Noordhuizen and Welpelo 1996 (6)), in natural resource management (US Forest Service 2014 a,b,c (7, 8, 9), (US EPA, 2006 (10); see alsohttp://www.waterboards.ca.gov/water_issues/programs/swamp/ais/prevention_planning.shtml; (last accessed October 16, 2023)or in supporting field operations wherein worker health and natural resource management issues intersect.1.2 HACCP evaluation is a simple linear process or a network of linear processes that represents the structure of any event; the hazard analysis (HA) depends on the data quality and data quantity available for the evaluation process, especially as that relates to critical control points (CCPs) characterized in completing HACCP. Control measures target CCPs and serve as limiting factors or control steps in a process that reduce or eliminate the hazards that initiated the HACCP evaluation. The main reason for implementing HACCP is to prevent problems associated with a specific process, practice, material, or product.1.3 This guide assumes that the reader is knowledgeable in specific resource management or engineering practices used as part of the HACCP process. A list of general references is provided for HACCP and implementation of HACCP and similar methods, as those apply to environmental hazard evaluation, natural resource management, and environmental engineering practices (11-26).1.4 This guide does not describe or reference detailed procedures for specific applications of HACCP, but describes how existing information or other empirical data should be used when assessing the hazards and identifying CCPs potentially of use in minimizing or eliminating specific hazards. Specific applications of HACCP evaluation are included as annexes to this guide, which include implementation of HACCP in resource management practices related to control and mitigation of invasive species or disease agents primarily of concern for managing fish and wildlife.1.5 HACCP evaluation has a well developed literature in, for example, food science and technology, and in engineering applications (see, for example, (11, 12, 13, 15, 17)). As a resource management tool, HACCP is relatively recent in application to the analysis of hazards to aquatic, wetland, and terrestrial habitats and the organisms occupying those habitats. (see, for example, US Forest Service 2014 a,b,c (7, 8, 9); see also http://www.haccp-nrm.org/ last accessed June 16, 2014). Most of the guidance provided herein is qualitative rather than quantitative, although quantitative methods should be applied to any hazard analysis when possible. Uncertainties associated with the analysis should also be characterized and incorporated into the HACCP evaluation when possible (see, for example, (11, 27-38)).1.6 This standard provides guidance for assessing hazard within a generalized framework that may be extended to specific environmental settings, such as that detailed in E1023 for aquatic habitats (Guide for Assessing the Hazard of a Material to Aquatic Organisms and Their Uses). This standard does not provide guidance on how to account for socio-economic or political considerations that influence the specification of the acceptability of risk associated with the hazard, particularly when HACCP is implemented and CCPs are considered within contemporary risk-based decision-making processes. Judgments concerning acceptability are outside the scope of this guide, but available guidance from ASTM is applicable to this process (see E2348 Standard Guide for Framework for a Consensus-based Environmental Decision-making Process).1.7 This guide is arranged as follows: Section 1Referenced Documents 2Descriptions of Terms Specific to This Standard 3Summary of Guide 4 5Basic Concepts of HACCP and Detailed Characterization of HACCP 6HACCP Applied to Prevention and Control of Invasive Species Annex A1HACCP-Derived Decontamination Procedures Mitigating Equipment-Mediated Transfers of Invasive Aquatic Biota, Principally Mussel Species Annex A2HACCP-Derived Decontamination Procedures for Controlling Equipment-Mediated Transfers of Disease Agents of Aquatic Biota, Principally Infectious Amphibian Diseases Annex A31.8 This standard does not purport to address all of the safety concerns, if any, associated with its use and the implementation of HACCP. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2590-23
标准名称:
Standard Guide for Conducting Hazard Analysis-Critical Control Point (HACCP) Evaluations
英文名称:
Standard Guide for Conducting Hazard Analysis-Critical Control Point (HACCP) Evaluations标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM A582/A582M-22 Standard Specification for Free-Machining Stainless Steel Bars
- ASTM A586-18 Standard Specification for Metallic-Coated Parallel and Helical Steel Wire Structural Strand
- ASTM A592/A592M-10(2020) Standard Specification for High-Strength Quenched and Tempered Low-Alloy Steel Forged Parts for Pressure Vessels
- ASTM A598/A598M-02(2022) Standard Test Method for Magnetic Properties of Magnetic Amplifier Cores
- ASTM A599/A599M-07(2017) Standard Specification for Tin Mill Products, Electrolytic Tin-Coated, Cold-Rolled Sheet
- ASTM A6/A6M-23 Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling
- ASTM A601/A601M-10(2020) Standard Specification for Electrolytic Manganese Metal
- ASTM A603-19 Standard Specification for Metallic-Coated Steel Structural Wire Rope
- ASTM A604/A604M-07(2022) Standard Practice for Macroetch Testing of Consumable Electrode Remelted Steel Bars and Billets
- ASTM A606/A606M-23 Standard Specification for Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance
- ASTM A609/A609M-12(2023) Standard Practice for Castings, Carbon, Low-Alloy, and Martensitic Stainless Steel, Ultrasonic Examination Thereof
- ASTM A625/A625M-13(2018) Standard Specification for Tin Mill Products, Black Plate, Single-Reduced
- ASTM A626/A626M-22 Standard Specification for Tin Mill Products, Electrolytic Tin Plate, Double Reduced
- ASTM A627-03(2019) Standard Test Methods for Tool-Resisting Steel Bars, Flats, and Shapes for Detention and Correctional Facilities
- ASTM A632-19 Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing (Small-Diameter) for General Service