- 您的位置:
- 快3网下载安装到手机 >>
- 全部标准分类 >>
- 国外标准 >>
- ASTM >>
- ASTM E561-23 Standard Test Method for KR Curve Determination

【国外标准】 Standard Test Method for KR Curve Determination
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The KR curve characterizes the resistance to fracture of materials during slow, stable crack extension and results from the growth of the plastic zone ahead of the crack as it extends from a fatigue precrack or sharp notch. It provides a record of the toughness development as a crack is driven stably under increasing applied stress intensity factor K. For a given material, KR curves are dependent upon specimen thickness, temperature, and strain rate. The amount of valid KR data generated in the test depends on the specimen type, size, method of loading, and, to a lesser extent, testing machine characteristics.5.2 For an untested geometry, the KR curve can be matched with the applied-K curves (crack driving curves) to estimate the degree of stable crack extension and the conditions necessary to cause unstable crack propagation (2). In making this estimate, KR curves are regarded as being independent of initial crack size ao and the specimen configuration in which they are developed. For a given material, material thickness, and test temperature, KR curves appear to be a function of only the effective crack extension Δae (3).5.2.1 To predict crack behavior and instability in a component, a family of applied-K curves is generated by calculating K as a function of crack size for the component using a series of force, displacement, or combined loading conditions. The KR curve may be superimposed on the family of applied-K curves as shown in Fig. 1, with the origin of the KR curve coinciding with the assumed initial crack size ao. The intersection of the applied-K curves with the KR curve shows the expected effective stable crack extension for each loading condition. The applied-K curve that develops tangency with the KR curve defines the critical loading condition that will cause the onset of unstable fracture under the loading conditions used to develop the applied-K curves.FIG. 1 Schematic Representation of KR curve and Applied K Curves to Predict Instability; Kc, P3, ac, Corresponding to an Initial Crack Size, ao5.2.2 Conversely, the KR curve can be shifted left or right in Fig. 1 to bring it into tangency with applied-K curve to determine the initial crack size that would cause crack instability under that loading condition.5.3 If the K-gradient (slope of the applied-K curve) of the specimen chosen to develop the KR curve has negative characteristics (see Note 1), as in a displacement-controlled test condition, it may be possible to drive the crack until a maximum or plateau toughness level is reached (4, 5, 6). When a specimen with positive K-gradient characteristics (see Note 2) is used, the extent of the KR curve which can be developed is terminated when the crack becomes unstable.NOTE 1: Fixed displacement in crack-line-loaded specimens results in a decrease of K with crack extension.NOTE 2: With force control, K usually increases with crack extension, and instability will occur at maximum force.1.1 This test method covers the determination of the resistance to fracture of metallic materials under Mode I loading at static rates using either of the following notched and precracked specimens: the middle-cracked tension M(T) specimen or the compact tension C(T) specimen. A KR curve is a continuous record of toughness development (resistance to crack extension) in terms of KR plotted against crack extension in the specimen as a crack is driven under an increasing stress intensity factor, K. (1)21.2 Materials that can be tested for KR curve development are not limited by strength, thickness, or toughness, so long as specimens are of sufficient size to remain predominantly elastic to the effective crack extension value of interest.1.3 Specimens of standard proportions are required, but size is variable, to be adjusted for yield strength and toughness of the materials.1.4 Only two of the many possible specimen types that could be used to develop KR curves are covered in this method.1.5 The test is applicable to conditions where a material exhibits slow, stable crack extension under increasing crack driving force, which may exist in relatively tough materials under plane stress crack tip conditions.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E561-23
标准名称:
Standard Test Method for KR Curve Determination
英文名称:
Standard Test Method for KR Curve Determination标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D817-12(2019) Standard Test Methods of Testing Cellulose Acetate Propionate and Cellulose Acetate Butyrate
- ASTM D8170-20 Standard Guide for Using Disposable Handheld Soil Core Samplers for the Collection and Storage of Soil for Volatile Organic Analysis
- ASTM D8171-18 Standard Test Methods for Density Determination of Flax Fiber
- ASTM D8174-18 Standard Test Method for Finite Flash Point Determination of Liquid Wastes by Small-Scale Closed Cup Tester
- ASTM D8176-18(2023) Standard Test Method for Mechanically Tapped Density of Activated Carbon (Powdered and Fine Mesh)
- ASTM D8180-23 Standard Specification for Rerefined Mineral Insulating Liquid Used in Electrical Apparatus
- ASTM D8181-19 Standard Specification for Microemulsion Blendstock for Preparing Microemulsion Test Fuel Oils
- ASTM D8186-18 Standard Test Method for Measurement of Impurities in Graphite by Electrothermal Vaporization Inductively Coupled Plasma Optical Emission Spectrometry (ETV-ICP OES)
- ASTM D8188-23 Standard Test Method for Determination of Density and Relative Density of Asphalt, Semi-Solid Bituminous Materials, and Soft-Tar Pitch by Use of a Digital Density Meter (U-Tube)
- ASTM D8192-23 Standard Test Method for Hardness in Colored and Colorless Water
- ASTM D8195-18 Standard Classification System and Basis for Specification for Polyethylene Terephthalate Film and Sheeting
- ASTM D8198-18 Standard Specification for Hydraulically Applied 100 % Wood Fiber Mulches
- ASTM D8199-20 Standard Test Method for Determining the Specific Strength of Hydraulically Applied Fiber Matrix Products for Erosion Control
- ASTM D820-93(2023) Standard Test Methods for Chemical Analysis of Soaps Containing Synthetic Detergents
- ASTM D8200-22 Standard Practice for Creating a Correlation to Compare Particle Size Distribution Results of Proppants by Dynamic Imaging Analyzers and Sieves