
【国外标准】 Standard Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Cast-in-place cylinder strength relates to the strength of concrete in the structure due to the similarity of curing conditions because the cylinder is cured within the slab. However, due to differences in moisture condition, degree of consolidation, specimen size, and length-diameter ratio, there is not a unique relationship between the strength of cast-in-place cylinders and cores of the same age. When cores can be drilled undamaged and tested in the same moisture condition as the cast-in-place cylinders, the strength of the cylinders can be expected to be on average 10 % higher than the cores at ages up to 91 days for specimens of the same size and length-diameter ratio.44.2 Strength of cast-in-place cylinders may be used for various purposes, such as estimating the load-bearing capacity of slabs, determining the time of form and shore removal, and determining the effectiveness of curing and protection.AbstractThis test method covers the determination of strength of cylindrical concrete specimens that have been molded in place using special molds attached to formwork. A concrete cylinder mold assembly consisting of a mold and a tubular support member is fastened within the concrete formwork prior to placement of the concrete. The elevation of the mold upper edge is adjusted to correspond to the plane of the finished slab surface. The mold support prevents direct contact of the slab concrete with the outside of the mold and permits its easy removal from the hardened concrete. Strength of cast-in-place cylinders may be used for various purposes, such as estimating the load-bearing capacity of slabs, determining the time of form and shore removal, and determining the effectiveness of curing and protection. Consolidation of concrete in the mold may be varied to simulate the conditions of placement. Internal vibration of concrete in the mold is prohibited except under special circumstances.1.1 This test method covers the determination of strength of cylindrical concrete specimens that have been molded in place using special molds attached to formwork. This test method is limited to use in slabs where the depth of concrete is from 125 mm to 300 mm [5 in. to 12 in.].1.2 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.2)1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C873/C873M-23
标准名称:
Standard Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds
英文名称:
Standard Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 3350.2.23:2001/Amdt 2:2004 Safety of household and similar electrical appliances - Particular requirements for appliances for skin and hair care
- AS/NZS 3350.2.23:2001/Amdt 4:2008 Safety of household and similar electrical appliances Particular requirements for skin or hair care
- AS/NZS 4266.23:1996 Reconstituted wood-based panels - Methods of test Determination of resistance to steam
- AS/NZS 61558.2.23:2001 Safety of power transformers, power supply units and similar devices - Particular requirements for transformers for construction sites (IEC 61558-2-23:2000, MOD)
- AS/NZS 61558.2.23:2011 (IEC TEXT)/Amdt 1:2012 Safety of Power Transformers, Power Supplies, Reactors and combinations thereof Particular requirements and tests for transformers and power supply units for construction sites
- AS/NZS 61558.2.23:2011/Amdt 1:2012 Safety of Power Transformers, Power Supplies, Reactors and combinations thereof Particular requirements and tests for transformers and power supply units for construction sites
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium