
【国外标准】 Standard Practice for Compressive Testing of Thin Damaged Laminates Using a Sandwich Long Beam Flexure Specimen
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This practice provides a standard method of testing damaged composite laminates which are too thin to be tested using typical anti-buckling fixtures, such as those used in Test Method D7137/D7137M. The laminate is first impacted or indented in order to produce a damage state representative of actual monolithic solid laminate structure. Impacting or static indentation is not performed on an assembled sandwich panel, as the damage state is altered by energy absorption in the core and by support of the core during the impact or indentation event. After damaging, the laminate is bonded onto the core with the impacted or indentation side of the laminate against the core, and with a localized un-bonded area encompassing the damage site. Fig. 1 illustrates the adhesive removal to avoid the damaged area and the assembly of the sandwich specimen with the impacted damaged laminate flipped over from the impacting or indentation orientation. The final assembled sandwich specimen is then tested using a long beam flexure setup with the damaged laminate being on the compression side. The sandwich panel configuration is used as a form of anti-buckling support for the thin damaged laminate.5.2 Susceptibility to damage from concentrated out-of-plane forces is one of the major design concerns of many structures made of advanced composite laminates. Knowledge of the damage resistance and damage tolerance properties of a laminated composite plate is useful for product development and material selection.5.3 The residual strength data obtained using this test method is used in research and development activities as well as for design allowables; however the results are specific to the geometry and physical conditions tested and are generally not scalable to other configurations.5.4 The properties obtained using this test method can provide guidance in regard to the anticipated damage tolerance capability of composite structures of similar material, thickness, stacking sequence, and so forth. However, it must be understood that the damage tolerance of a composite structure is highly dependent upon several factors including geometry, stiffness, support conditions, and so forth. Significant differences in the relationships between the existent damage state and the residual compressive strength can result due to differences in these parameters. For example, residual strength and stiffness properties obtained using this test method would more likely reflect the damage tolerance characteristics of an un-stiffened monolithic skin or web than that of a skin attached to substructure which resists out-of-plane deformation.5.5 The reporting section requires items that tend to influence residual compressive strength to be reported; these include the following: material, methods of material fabrication, accuracy of lay-up orientation, laminate stacking sequence and overall thickness, specimen geometry, specimen preparation, specimen conditioning, environment of testing, void content, volume percent reinforcement, type, size and location of damage (including method of non-destructive inspection (NDI)), fixture geometry, time at temperature, and speed of testing.5.6 Properties that result from the residual strength assessment include the following: compressive residual strength FCAI.1.1 This practice covers an approach for compressive testing thin damaged multidirectional polymer matrix composite laminates reinforced by high-modulus fibers using a sandwich long beam flexure specimen. It provides a test configuration in which the core does not constrain any protruding back side damage. It is limited to testing of monolithic solid laminates which are too thin to be tested using typical anti-buckling fixtures. It does not cover compressive testing of damaged sandwich panel facings. The composite material forms are limited to continuous-fiber or discontinuous-fiber (tape or fabric, or both) reinforced composites in which the laminate is balanced and symmetric with respect to the test direction1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.2.1 Within the text the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM D7956/D7956M-16
标准名称:
Standard Practice for Compressive Testing of Thin Damaged Laminates Using a Sandwich Long Beam Flexure Specimen
英文名称:
Standard Practice for Compressive Testing of Thin Damaged Laminates Using a Sandwich Long Beam Flexure Specimen标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process