
【国外标准】 Standard Practice for Using the Fricke Dosimetry System
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 The Fricke dosimetry system provides a reliable means for measurement of absorbed dose to water, based on a process of oxidation of ferrous ions to ferric ions in acidic aqueous solution by ionizing radiation (ICRU 80, PIRS-0815, (4)). In situations not requiring traceability to national standards, this system can be used for absolute determination of absorbed dose without calibration, as the radiation chemical yield of ferric ions is well characterized (see Appendix X3).4.2 The dosimeter is an air-saturated solution of ferrous sulfate or ferrous ammonium sulfate that indicates absorbed dose by an increase in optical absorbance at a specified wavelength. A temperature-controlled calibrated spectrophotometer is used to measure the absorbance.1.1 This practice covers the procedures for preparation, testing, and using the acidic aqueous ferrous ammonium sulfate solution dosimetry system to measure absorbed dose to water when exposed to ionizing radiation. The system consists of a dosimeter and appropriate analytical instrumentation. The system will be referred to as the Fricke dosimetry system. The Fricke dosimetry system may be used as either a reference standard dosimetry system or a routine dosimetry system.1.2 This practice is one of a set of standards that provides recommendations for properly implementing dosimetry in radiation processing, and describes a means of achieving compliance with the requirements of ISO/ASTM Practice 52628 for the Fricke dosimetry system. It is intended to be read in conjunction with ISO/ASTM Practice 52628.1.3 The practice describes the spectrophotometric analysis procedures for the Fricke dosimetry system.1.4 This practice applies only to gamma radiation, X-radiation (bremsstrahlung), and high-energy electrons.1.5 This practice applies provided the following are satisfied:1.5.1 The absorbed dose range shall be from 20 Gy to 400 Gy (1).21.5.2 The absorbed dose rate does not exceed 106 Gy·s−1 (2).1.5.3 For radioisotope gamma sources, the initial photon energy is greater than 0.6 MeV. For X-radiation (bremsstrahlung), the initial energy of the electrons used to produce the photons is equal to or greater than 2 MeV. For electron beams, the initial electron energy is greater than 8 MeV.NOTE 1: The lower energy limits given are appropriate for a cylindrical dosimeter ampoule of 12 mm diameter. Corrections for displacement effects and dose gradient across the ampoule may be required for electron beams (3). The Fricke dosimetry system may be used at lower energies by employing thinner (in the beam direction) dosimeter containers (see ICRU Report 35).1.5.4 The irradiation temperature of the dosimeter should be within the range of 10 °C to 60 °C.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM 51026-23
标准名称:
Standard Practice for Using the Fricke Dosimetry System
英文名称:
Standard Practice for Using the Fricke Dosimetry System标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS 1038.23-2002 (R2013) Coal and coke - Analysis and testing Higher rank coal and coke - Carbonate carbon
- AS 1774.23.1-1992 Refractories and refractory materials - Physical test methods Abradability index - Oblique method
- AS 1807.23-1989 Cleanrooms, workstations and safety cabinets - Methods of test Determination of intensity of radiation from germicidal ultraviolet lamps
- ASTM F2783-20 Standard Practice for Design, Manufacture, Operation, Maintenance, and Inspection of Amusement Rides and Devices, in Canada
- ASTM F2787-13(2018) Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers
- ASTM F2789-10(2020) Standard Guide for Mechanical and Functional Characterization of Nucleus Devices
- ASTM F2790-10(2019)e1 Standard Practice for Static and Dynamic Characterization of Motion Preserving Lumbar Total Facet Prostheses
- ASTM F2791-24 Standard Guide for Assessment of Surface Texture of Non-Porous Biomaterials in Two Dimensions
- ASTM F2793-14(2023) Standard Specification for Bicycle Grips
- ASTM F2795-18 Standard Test Method for Performance of Self-Contained Soft Serve and Shake Freezers
- ASTM F2797-19 Standard Test Method for Evaluating Edge Cleaning Effectiveness of Vacuum Cleaners
- ASTM F2798-09(2023) Standard Specification for Sealless Lube Oil Pump with Oil Through Motor for Marine Applications
- ASTM F2799-14(2019) Standard Practice for Maintenance of Aircraft Electrical Wiring Systems
- ASTM F2810-15(2020) Standard Specification for Elliptical Trainers
- ASTM F2817-13(2023) Standard Specification for Poly (Vinyl Chloride) (PVC) Gas Pressure Pipe and Fittings For Maintenance or Repair