
【国外标准】 Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 It has been shown that bending stresses that inadvertently occur due to misalignment between the applied force and the specimen axes during the application of tensile and compressive forces can affect the test results. In recognition of this effect, some test methods include a statement limiting the misalignment that is permitted. The purpose of this practice is to provide a reference for test methods and practices that require the application of tensile or compressive forces under conditions where alignment is important. The objective is to implement the use of common terminology and methods for verification of alignment of testing machines, associated components and test specimens.4.2 Alignment verification intervals when required are specified in the methods or practices that require the alignment verification. Certain types of testing can provide an indication of the current alignment condition of a testing frame with each specimen tested. If a test method requires alignment verification, the frequency of the alignment verification should capture all the considerations that is, time interval, changes to the testing frame and when applicable, current indicators of the alignment condition through test results.4.3 Whether or not to improve axiality should be a matter of negotiation between the interested parties.1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens during routine testing in the elastic range. These methods are particularly applicable to the force levels normally used for tension testing, compression testing, creep testing, and uniaxial fatigue testing. The principal objective of this practice is to assess the amount of bending exerted upon a test specimen by the ordinary components assembled into a materials testing machine, during routine tests.1.2 This practice is valid for metallic and nonmetallic testing.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E1012-19
标准名称:
Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application
英文名称:
Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- INCITS/ISO/IEC 14496-19:2004 (R2019) Information technology - Coding of audio-visual objects - Part 19: Synthesized texture stream
- INCITS/ISO/IEC 23000-19:2020 (2021) Information technology - Multimedia application format (MPEG-A) - Part 19: Common media application format (CMAF) for segmented media
- ASTM D8137-18(2023) Practice for Accelerated Aging of Leather
- ASTM D8138-23 Standard Specification for Preformed Silicone Joint Sealing System for Bridges
- ASTM D8139-23 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
- ASTM D814-95(2020) Standard Test Method for Rubber Property—Vapor Transmission of Volatile Liquids
- ASTM D8140-18(2023) Standard Guide for the Use of Foundry Sand in Asphalt Mixtures
- ASTM D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments
- ASTM D8144-22 Standard Test Method for Separation and Determination of Aromatics, Nonaromatics, and FAME Fractions in Middle Distillates by Solid-Phase Extraction and Gas Chromatography
- ASTM D8148-22 Standard Test Method for Spectroscopic Determination of Haze in Fuels
- ASTM D8149-20 Standard Practice for Optimization, Calibration, and Validation of Ion Chromatographic Determination of Heteroatoms and Anions in Petroleum Products and Lubricants
- ASTM D8150-22 Standard Test Method for Determination of Organic Chloride Content in Crude Oil by Distillation Followed by Detection Using Combustion Ion Chromatography
- ASTM D8152-18 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test
- ASTM D8154-24 Standard Test Methods for 1H-NMR Determination of Ketone-Ethylene-Ester and Polyvinyl Chloride Contents in KEE-PVC Roofing Fabrics
- ASTM D8155-17(2023) Standard Practice for Shake Extraction of Solid Mining and Metallurgical Processing Waste with Water