
【国外标准】 Standard Practice for Determining Volatile Organic Compound (VOC) Content of Paints and Related Coatings
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This practice discusses applicable ASTM test methods used in the determination of the VOC content of paints and related coatings and provides equations for calculating the VOC content expressed as the mass of VOC: (1) per unit volume of coating less water and exempt volatile compounds, and (2) per unit volume of coating solids and (3) per unit mass of coating solids.5.2 Volatile organic compound content is used to compare the amount of VOC released from different coatings used for the same application, that is, to coat the same area to the same dry film thickness (assuming the same application efficiency).5.3 VOC content data are required by various regulatory agencies.5.4 Only the expression of VOC content as a function of the volume of coating solids gives a linear measure of the difference in VOC released from different coatings used for the same application.NOTE 4: Thus assuming the same transfer efficiency, a coating with VOC content of 3 lb of VOC/gal of solids would release 1/2 the VOC that would a coating with 6 lb of VOC/gal of solids.5.5 When VOC content is expressed as a function of the volume of coating less water and exempt solvents, the values obtained do not account for differences in the volume solids content of the coatings being compared: this expression, therefore, does not provide a linear measure of the difference in VOC emitted from different coatings used for the same application.NOTE 5: Thus, a coating with VOC content of 3 lb of VOC/gal less water and exempt volatile compounds would release about 85 % less VOC than a coating with 6 lb of VOC/gal less water and exempt volatile compounds.1.1 This practice measures the volatile organic compound (VOC) content of solventborne and waterborne paints and related coatings as determined from the quantity of material released from a sample under specified bake conditions and subtracting exempt volatile compounds and water if present.NOTE 1: The regulatory definition, under the control of the U.S. EPA, can change. To ensure currency, contact the local air pollution control agency.1.2 This practice provides a guide to the selection of appropriate ASTM test methods for the determination of VOC content.1.3 Certain organic compounds that may be released under the specified bake conditions are not counted toward coating VOC content because they do not participate appreciably in atmospheric photochemical reactions. Such negligibly photochemically reactive compounds are referred to, as exempt volatile compounds in this practice.NOTE 2: Information on the US EPA definition of VOC and a list of the current US EPA approved exempt volatile compounds which have been used in coatings, are provided in Appendix X3.1.4 VOC content is calculated as a function of (1) the volume of coating less water and exempt volatile compounds, and (2) the volume of coating solids, and (3) the weight of coating solids.1.5 The values stated in SI units are to be regarded as standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D3960-05(2018)
标准名称:
Standard Practice for Determining Volatile Organic Compound (VOC) Content of Paints and Related Coatings
英文名称:
Standard Practice for Determining Volatile Organic Compound (VOC) Content of Paints and Related Coatings标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASC X9 TR 48-2018 Card-Not-Present (CNP) Fraud Mitigation in the United States: Strategies for Preventing, Detecting, and Responding to a Growing Threat
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A102-04(2019) Standard Specification for Ferrovanadium