
【国外标准】 Standard Test Method for Performance of Steam Kettles
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The maximum energy input rate test is used to confirm that the steam kettle is operating within 5 % of the manufacturer's rated input so that testing may continue. This test method also may disclose any problems with the electric power supply, gas service pressure, or steam supply flow or pressure. The maximum input rate can be useful to food service operators for managing power demand.5.2 The capacity test determines the maximum volume of food product the kettle can hold and the amount of food product that will be used in subsequent tests. Food service operators can use the results of this test method to select a steam kettle, which is appropriately sized for their operation.5.3 Production capacity is used by food service operators to choose a steam kettle that matches their food output. The production capacity determined in this test method is a close indicator of how quickly the kettle can bring soups, sauces, and other liquids up to serving temperature.5.4 Heatup energy efficiency and simmer energy rate allow the operator to consider energy performance when selecting a steam kettle. Simmer energy rate is also an indicator of steam kettle energy performance when preparing foods which require long cook times, for example, potatoes, beans, rice, or stew.5.5 Pilot energy rate can be used to estimate energy consumption for gas-fired steam kettles with standing pilots during non-cooking periods.1.1 This test method evaluates the energy consumption and cooking performance of steam kettles. The food service operator can use this evaluation to select a steam kettle and understand its energy consumption and performance characteristics.1.2 This test method is applicable to direct steam and self-contained gas or electric steam kettles. The steam kettle can be evaluated with respect to the following, where applicable:1.2.1 Maximum energy input rate (10.2).1.2.2 Capacity (10.3).1.2.3 Heatup energy efficiency and energy rate (10.4).1.2.4 Production capacity (10.4).1.2.5 Simmer energy rate (10.5).1.2.6 Pilot energy rate, if applicable (10.6).1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F1785-97(2020)
标准名称:
Standard Test Method for Performance of Steam Kettles
英文名称:
Standard Test Method for Performance of Steam Kettles标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 60335.2.97:2007/Amdt 1:2009 Household and similar electrical appliances - Safety Particular requirements for drives for rolling shutters, awnings, blinds and similar equipment (IEC 60335-2-97 Ed 2.2, IDT)
- ASC X9 TR 51-2020 Levies Companion Document Uniform Adoption of X9.129 for Levies Version 3.0
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes