
【国外标准】 Standard Practice for Manual Sampling of Liquid Fuels, Associated Materials and Fuel System Components for Microbiological Testing
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Representative samples of fuel products and associated substances are required for the determination of microbial contamination in fuels and fuel systems in order to accurately assess the biodeterioration risk posed to the fuel, fuel-system components or both. Uncontrolled microbial contamination can affect fuel specification properties adversely.6 As discussed in Guide D6469, microbes can cause a variety of operational problems, including filter plugging and microbially influenced corrosion (MIC), the latter of which causes valve failure, tank and pipeline failure.5.2 These practices for microbiological sampling decrease the risk of contaminating samples with extraneous microbes, thereby increasing the probability that the original microbial population in the sample does not change significantly between the time of sampling and the time of testing.5.3 The objective of sampling for microbiological testing is to obtain representative samples that are likely to reflect the degree and nature of microbial contamination in the system from which the samples are collected. Manual 477 addresses the rationale for and design of microbial contamination programs. Recognizing that microbiological contamination is not distributed uniformly throughout fuel systems, both the number and types of samples collected will normally be different from the samples collected per Practice D4057 in order to determine whether product meets specifications.5.4 The physical, chemical and microbiological property tests to be performed on a sample will dictate the sampling procedures, the sample quantity required, and many of the sample handling requirements.5.5 Fuel systems are not normally designed to facilitate optimal microbiological sampling. Consequently, the selection of sampling device and sample source reflect compromises between accessibility and suitability for meeting the sample collection objective.5.6 The guidance provided in Practice D4057 generally applies to this practice as well. Consequently, this practice will address only those procedures that apply uniquely to microbiological sampling.1.1 This practice covers aspects of sample device preparation and sample handling that prevent samples from becoming contaminated with microorganisms not originally contained within the sample.1.2 This practice also covers sample handling considerations that reflect the perishability of samples collected for microbiological testing.1.3 This practice supplements Practice D4057 by providing guidance specific to the manual sampling of fuels when samples are to be tested for microbial contamination.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7464-20
标准名称:
Standard Practice for Manual Sampling of Liquid Fuels, Associated Materials and Fuel System Components for Microbiological Testing
英文名称:
Standard Practice for Manual Sampling of Liquid Fuels, Associated Materials and Fuel System Components for Microbiological Testing标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation