
【国外标准】 Standard Practice for Collection and Handling of Soils Obtained in Core Barrel Samplers for Environmental Investigations
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Often during environmental investigations, soils are analyzed after being collected from the surface, the vadose zone (Terminology D653), and sometimes from below the groundwater table to identify and quantify the presence of a chemical contaminant. A contaminant is a substance that is typically hazardous and either is not normally present or that occurs naturally but is of an uncharacteristically high concentration (Guide D4687). A three-dimensional spatial array of samples can often provide information as to the source and route(s) of migration of the contaminant. The resultant information is used to direct remedial and corrective actions or can be used for monitoring purposes. Obtaining a soil sample with a core barrel sampler involves driving this device into the ground and then retrieving it for sample processing. Several methods for advancing a core barrel are generally acceptable (for example, Test Method D1586; Practices D1587, D3550, and D6151; Guides D5784, D5875, D5876, D6169, and D6282). Drilling methods that use drilling fluids (liquids or air) should be avoided because they are more susceptible to cross-contamination (Guide D6286) (see 6.1.6).5.2 If samples are to be collected for the determination of per- and poly-fluorinated alkyl substances (PFAS), all sampling equipment should be made of fluorine-free materials. Other considerations for PFAS sampling may exist but are beyond the scope of this standard.1.1 This practice covers procedures for obtaining soils from core barrel samplers for chemical and physical analysis, with an emphasis on the collection and handling procedures that maintain the representativeness of the chemical contaminants of concern. Core barrel samplers are initially empty (hollow) until they are pushed into the ground to collect and retrieve a cylindrical soil sample with minimal disturbance. The selection of equipment and the sample handling procedures are dependent on the soil properties, the depth of sampling, and the general properties of the chemical contaminants of concern, that is, volatile organic compounds, semi-volatile organic compounds, and inorganic constituents. The sampling procedures described are designed to maintain representative concentrations of the contaminants regardless of their physical state(s), that is, solid, liquid, or gas.1.2 This practice covers soil samplers used in Guide D6169 on soils and rock sampling and included in Guide D6232 for waste sampling. Guide D6169 provides additional information on samplers and procedures that will preserve representative contaminate concentrations. Guide D6282 is on direct-push soil samplers that are most frequently used for environmental work. Guide D4547 addresses special sampling of soils for volatile compounds. This standard does not include sediment samplers in Guide D4823, but the same principles may apply to handling of those cores. Guide D4700 includes information on shallow manual push soil samplers.1.3 Five general types of core barrel samplers are discussed in this practice: split-barrel, soil corer, ring-lined barrel, thin-walled tube, and solid-barrel samplers.1.4 This document does not cover all the core barrel devices that are available for the collection of soil samples.1.5 The procedures described may or may not be applicable to handling of samples for assessing certain geotechnical properties, for example, soil porosity.NOTE 1: Prior to commencement of any intrusive exploration, the site should be checked for underground utilities.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6640-21
标准名称:
Standard Practice for Collection and Handling of Soils Obtained in Core Barrel Samplers for Environmental Investigations
英文名称:
Standard Practice for Collection and Handling of Soils Obtained in Core Barrel Samplers for Environmental Investigations标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation