
【国外标准】 Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method is one of those required to determine if the presence of a medical device may cause injury to individuals during an MR examination or in the MR environment. Other safety issues which should be addressed include, but may not be limited to: magnetically induced torque (see Test Method F2213) and radiofrequency (RF) heating (see Test Method F2182). The terms and icons in Practice F2503 should be used to mark the device for safety in the magnetic resonance environment.5.2 If the maximum magnetically induced displacement force for the specified magnetic field conditions (see Appendix X3) is less than the force on the device due to gravity (its weight), it is assumed that any risk imposed by the application of the magnetically induced force is no greater than any risk imposed by normal daily activity in the Earth’s gravitational field. This statement does not constitute an acceptance criterion; it is provided as a conservative reference point. It is possible that a greater magnetically induced displacement force can be acceptable and would not harm a patient or other individual in a specific case.NOTE 2: For instance, in the case of an implanted device that is or could be subjected to a magnetic displacement force greater than the force due to gravity, the location of the implant, surrounding tissue properties, and means of fixation within the body may be considered. For a non-implanted device with a magnetically induced force greater than the gravitational force, consideration should be given to mitigate the projectile risk which may include fixing or tethering the device or excluding it from the MR environment so that it does not become a projectile.5.3 The maximum static magnetic field strength and spatial field gradient vary for different MR systems. Appendix X3 provides guidance for calculating the allowable static magnetic field strength and spatial field gradient.5.4 This test method alone is not sufficient for determining if a device is safe in the MR environment.1.1 This test method covers the measurement of the magnetically induced displacement force produced by static magnetic field gradients (spatial field gradient) on medical devices and the comparison of that force to the weight of the medical device.1.2 This test method does not address other possible safety issues which include, but are not limited to: issues of magnetically induced torque, radiofrequency (RF) heating, induced heating, acoustic noise, interaction among devices, and the functionality of the device and the magnetic resonance (MR) system.1.3 This test method is intended for devices that can be suspended from a string. Devices which cannot be suspended from a string are not covered by this test method. The weight of the string from which the device is suspended during the test must be less than 1 % of the weight of the tested device.1.4 This test method shall be carried out in a horizontal bore MR system with a static magnetic field oriented horizontally and parallel to the MR system bore.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2052-21
标准名称:
Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment
英文名称:
Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process