
【国外标准】 Standard Test Method for Use of 2N2222A Silicon Bipolar Transistors as Neutron Spectrum Sensors and Displacement Damage Monitors
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The neutron test spectrum must be known in order to use a measured device response to predict the device performance in an operational environment (Practice E1854). Typically, neutron spectra are determined using a set of sensors with response functions sensitive over the neutron energy region to which the device under test (DUT) responds (Guide E721). For silicon bipolar devices exposed in reactor neutron spectra, this effective energy range is between 0.01 and 10 MeV. A typical set of activation reactions that lack fission reactions from nuclides such as 235U, 237Np, or 239Pu, will have very poor sensitivity to the spectrum between 0.01 and 2 MeV. For a pool-type reactor spectrum, 70 % of the DUT electronic damage response may lie in this range making its determination of critical importance.5.2 When dosimeters with a significant response in the 0.01 to 2 MeV energy region, such as fission foils, are unavailable, silicon transistors can provide a dosimeter with the needed response to define the spectrum in this critical energy range. When fission foils are part of the sensor set, the silicon sensor provides confirmation of the spectral shape in this energy region.5.3 Silicon bipolar transistors, such as type 2N2222A, are inexpensive, smaller than fission foils contained in a boron ball, and sensitive to a part of the neutron spectrum important to the damage of modern silicon electronics. They also can be used directly in arrays to spatially map 1-MeV(Si) equivalent displacement damage fluence. The proper set of steps to take in reading the transistor-gain degradation is described in this test method.5.4 The energy-dependence of the displacement damage function for silicon is found in Practice E722. The major portion of the response for the silicon transistors will generally be above 100 keV.1.1 This test method covers the use of 2N2222A silicon bipolar transistors as dosimetry sensors in the determination of neutron energy spectra and as 1-MeV(Si) equivalent displacement damage fluence monitors.1.2 The neutron displacement in silicon can serve as a neutron spectrum sensor in the range 0.1 to 2.0 MeV and can serve as a substitute when fission foils are not available. It has been applied in the fluence range between 2 × 1012 n/cm 2 to 1 × 1014 n/cm2 and should be useful up to 1 × 1015 n/cm2. This test method details the acquisition and use of 1-MeV(Si) equivalent fluence information for the partial determination of the neutron spectra by using 2N2222A transistors.1.3 This sensor yields a direct measurement of the silicon 1-MeV equivalent fluence by the transfer technique.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E1855-20
标准名称:
Standard Test Method for Use of 2N2222A Silicon Bipolar Transistors as Neutron Spectrum Sensors and Displacement Damage Monitors
英文名称:
Standard Test Method for Use of 2N2222A Silicon Bipolar Transistors as Neutron Spectrum Sensors and Displacement Damage Monitors标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 2341.20:1998 Methods of testing bitumen and related roadmarking products Determination of sieve residue for bituminous materials
- AS/NZS 4266.20:1996 Reconstituted wood-based panels - Methods of test Determination of resistance to surface abrasion (Taber abrasion test)
- AS/NZS 4276.20:2003 (R2013) Water microbiology Examination for coagulase positive staphylococci, including Staphylococcus aureus, by membrane filtration
- AS/NZS 60079.20.1:2012 Explosive atmospheres Material characteristics for gas and vapour classification - Test methods and data
- AS/NZS 60695.11.20:2001/Amdt 1:2004 Fire hazard testing Test flames - 500 W flame test methods
- AS/NZS 60745.2.20:2003 Hand-held motor-operated electric tools - Safety - Particular requirements for band saws
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium