
【国外标准】 Standard Practice for Acoustic Emission Examination of Pressurized Containers Made of Fiberglass Reinforced Plastic with Balsa Wood Cores
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This practice does not rely on absolute quantities of AE parameters. It relies on trends of cumulative AE counts that are measured during a specified sequence of loading cycles. This practice includes an example of examination settings and acceptance criteria as a nonmandatory appendix.FIG. 1 Recommended Features of the Apparatus4.2 Acoustic emission (AE) counts were used as a measure of AE activity during development of this practice. Cumulative hit duration may be used instead of cumulative counts if a correlation between the two is determined. Several processes can occur within the structure under examination. Some may indicate unacceptable flaws (for example, growing resin cracks, fiber fracture, delamination). Others may produce AE but have no structural significance (for example, rubbing at interfaces). The methodology described in this practice prevents contamination of structurally significant data with emission from insignificant sources.4.3 Background Noise—Background noise can distort interpretations of AE data and can preclude completion of an examination. Examination personnel should be aware of sources of background noise at the time examinations are conducted. AE examinations should not be conducted until such noise is substantially eliminated.4.4 Mechanical Background Noise—Mechanical background noise is generally induced by structural contact with the container under examination. Examples are: personnel contact, wind borne sand or rain. Also, leaks at pipe connections may produce background noise.4.5 Electronic Noise—Electronic noise such as electromagnetic interference (EMI) and radio frequency interference (RFI) can be caused by electric motors, overhead cranes, electrical storms, welders, etc.4.6 Airborne Background Noise—Airborne background noise can be produced by gas leaks in nearby equipment.4.7 Accuracy of the results from this practice can be influenced by factors related to setup and calibration of instrumentation, background noise, material properties, and structural characteristics.1.1 This practice covers guidelines for acoustic emission (AE) examinations of pressurized containers made of fiberglass reinforced plastic (FRP) with balsa cores. Containers of this type are commonly used on tank trailers for the transport of hazardous chemicals.1.2 This practice is limited to cylindrical shape containers, 0.5 m [20 in.] to 3 m [120 in.] in diameter, of sandwich construction with balsa wood core and over 30 % glass (by weight) FRP skins. Reinforcing material may be mat, roving, cloth, unidirectional layers, or a combination thereof. There is no restriction with regard to fabrication technique or method of design.1.3 This practice is limited to containers that are designed for less than 0.520 MPa [75.4 psi] (gage) above static pressure head due to contents.1.4 This practice does not specify a time interval between examinations for re-qualification of a pressure container.1.5 This practice is used to determine if a container is suitable for service or if follow-up NDT is needed before that determination can be made.1.6 Containers that operate with a vacuum are not within the scope of this practice.1.7 Repair procedures are not within the scope of this practice.1.8 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E1888/E1888M-17
标准名称:
Standard Practice for Acoustic Emission Examination of Pressurized Containers Made of Fiberglass Reinforced Plastic with Balsa Wood Cores
英文名称:
Standard Practice for Acoustic Emission Examination of Pressurized Containers Made of Fiberglass Reinforced Plastic with Balsa Wood Cores标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 3200.2.17:1994/Amdt 1:1997 Approval and test specification - Medical electrical equipment - Particular requirements for safety - Remote-controlled automatically-driven gamma-ray afterloading equipment
- AS/NZS 3350.2.17:2000/Amdt 1:2001 Safety of household and similar electrical appliances Particular requirements - Blankets, pads and similar flexible heating
- AS/NZS 3350.2.17:2000/Amdt 3:2007 Safety of household and similar electrical appliances Particular requirements - Blankets, pads and similar flexible heating appliances (IEC 60335-2-17:1998, MOD)
- AS/NZS 4456.17:2003/Amdt 1:2004 Masonry units, segmental pavers and flags - Methods of test Determining initial rate of absorption (suction)
- AS/NZS 60079.17:2009/Amdt 1:2011 Explosive atmospheres Electrical installations inspection and maintenance
- AS/NZS 60335.2.17:2004/Amdt 2:2009 Household and similar electrical appliances - Safety Particular requirements for blankets, pads, clothing and similar flexible heating appliances (IEC 60335-2-17 Ed 2.2, MOD)
- AS/NZS 60598.2.17:2006 Luminaires Particular requirements - Luminaires for stage lighting, television, film and photographic studios (outdoor and indoor)(IEC 60598.2.17, Ed. 1.0 (1984) MOD)
- AS/NZS 60745.2.17:2003 Hand-held motor-operated electric tools - Safety - Particular requirements for routers and trimmers
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members