
【国外标准】 Standard Test Method for Thermal-Oxidative Stability of Polypropylene Using a Specimen Rotator Within an Oven
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Under the severe conditions of this test method, the specimens undergo degradation at a rate that is dependent upon the thermal endurance of the polypropylene material under examination.5.2 The thermal level of this test method is considered sufficiently severe to cause failure of commercial grades of heat-stable polypropylene within a reasonable period of time. If desired, lower temperatures can be applied to estimate the performance of polypropylene materials with lower heat stability.5.3 The technique of specimen rotation described in this test method provides an estimate of the life-temperature relationship of polypropylene. If this test method is conducted at different temperatures on the same material, a more reliable estimate of the life-temperature relationship of polypropylene is determined. This test method can be conducted at several temperatures and the data interpreted through use of the Arrhenius relation, by plotting the logarithms of times to failure against the reciprocals of the temperatures in kelvins (K). Temperatures in the range from 100 to 150°C, with intervals of 10°C, are suggested for this purpose.5.4 The stability as determined under the prescribed test method is not directly related to the suitability of the compound for a use where different conditions prevail.5.5 The specimen rotation technique of thermal aging increases the probability that all specimens will be exposed similarly and that the effect of temperature gradients in an oven will be minimized.1.1 This test method provides a means for estimating the resistance of polypropylene, in molded form, to accelerated aging by heat in the presence of air using a forced draft oven.1.2 The stability determined by this test method is not directly related to the suitability of the material for use when different environmental conditions prevail and shall not be used to predict performance.NOTE 1: The specified thermal levels in this test method are considered sufficiently severe to cause failure of commercial grades of heat-stable polypropylene within a reasonable period of time. If desired, lower temperatures can be applied to estimate the performance of polypropylene with lower heat stabilities.1.3 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 2: This test method and ISO 4577–1983 are technically similar but different in preparation of test specimens, thickness of test specimen, measurement of the number of air flow changes in the ovens, and the number of air changes per hour required.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D3012-19
标准名称:
Standard Test Method for Thermal-Oxidative Stability of Polypropylene Using a Specimen Rotator Within an Oven
英文名称:
Standard Test Method for Thermal-Oxidative Stability of Polypropylene Using a Specimen Rotator Within an Oven标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 1462.19(Int):1999 Methods of test for plastics pipes and fittings C-Ring test for fracture toughness of PVC pipes
- AS/NZS 2111.19.2:1996 (R2016)/Amdt 1:1998 Textile floor coverings - Tests and measurements - Colourfastness tests - Shampoo solution
- AS/NZS 3012:1995 Electrical installations - Construction and demolition sites
- AS/NZS 4456.19:2003/Amdt 1:2004 Masonry units, segmental pavers and flags - Methods of test Determining of bow
- AS/NZS 60745.2.19:2011 Hand-held motor-operated electric tools - Safety Particular requirements for jointers
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip