
【国外标准】 Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This practice is used to assess the indigenous inclusions or second-phase constituents in metals using extreme value statistics.5.2 It is well known that failures of mechanical components, such as gears and bearings, are often caused by the presence of large nonmetallic oxide inclusions. Failure of a component can often be traced to the presence of a large inclusion. Predictions related to component fatigue life are not possible with the evaluations provided by standards such as Test Methods E45, Practice E1122, or Practice E1245. The use of extreme value statistics has been related to component life and inclusion size distributions by several different investigators (3-8). The purpose of this practice is to create a standardized method of performing this analysis.5.3 This practice is not suitable for assessing the exogenous inclusions in steels and other metals because of the unpredictable nature of the distribution of exogenous inclusions. Other methods involving complete inspection such as ultrasonics must be used to locate their presence.AbstractThis practice describes a methodology to statistically characterize the distribution of the largest indigenous non-metallic inclusions in steel specimens based upon quantitative metallographic measurements. This practice enables the experimenter to estimate the extreme value distribution of inclusions in steels. The procedures in determining non-metallic inclusions in steel are presented and discussed in details.1.1 This practice describes a methodology to statistically characterize the distribution of the largest indigenous nonmetallic inclusions in steel specimens based upon quantitative metallographic measurements. The practice is not suitable for assessing exogenous inclusions.1.2 Based upon the statistical analysis, the nonmetallic content of different lots of steels can be compared.1.3 This practice deals only with the recommended test methods and nothing in it should be construed as defining or establishing limits of acceptability.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4.1 For measurements obtained from light microscopy, linear feature parameters shall be reported as micrometers, and feature areas shall be reported as micrometers.1.5 The methodology can be extended to other materials and to other microstructural features.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2283-08(2019)
标准名称:
Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features
英文名称:
Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASC X9 IR 01-2019 Informative Report - Quantum Computing Risks to the Financial Services Industry
- ASC X9 TR 100-2019 Organization of Check-related Payments Standards Part 1: Organization of Standards Part 2: Definitions used in Standards
- ASC X9 TR 50-2019 Quantum Techniques in Cryptographic Message Syntax (CMS)
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications